50道小学奥数题及解析文档格式.docx
《50道小学奥数题及解析文档格式.docx》由会员分享,可在线阅读,更多相关《50道小学奥数题及解析文档格式.docx(17页珍藏版)》请在冰豆网上搜索。
3.甲乙二人从两地同时相对而行,经过4小时,在间隔中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?
根据在间隔中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×
2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
4×
2÷
4=8÷
4=2(千米)
甲每小时比乙快2千米。
4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?
根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷
2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
0.6÷
[13-(13+7)÷
2]=0.6÷
[13—20÷
3=0.2(元)
每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆制止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?
(交换乘客的时间略去不计)
根据两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。
根据两车的速度和行驶的时间可求两车行驶的总路程。
下午2点是14时。
往返用的时间:
14-8=6(时)
两地间路程:
(40+45)×
6÷
2=85×
2=255(千米)
两地相距255千米。
6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?
第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]?
千米,也就是第一组要追赶的路程。
又知第一组每小时比第二组快(?
4.5-3.5)千米,由此便可求出追赶的时间。
第一组追赶第二组的路程:
3.5-(4.5-?
3.5)=3.5-1=2.5(千米)
第一组追赶第二组所用时间:
2.5÷
(4.5-3.5)=2.5÷
1=2.5(小时)
第一组2.5小时能追上第二小组。
7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。
假设把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
乙仓存粮:
(32.5×
2+5)÷
(4+1)=(65+5)÷
5=70÷
5=14(吨)
甲仓存粮:
14×
4-5=56-5=51(吨)
甲仓存粮51吨,乙仓存粮14吨。
8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?
根据甲队每天比乙队多修10米,可以这样考虑:
如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。
由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
乙每天修的米数:
(400-10×
4)÷
(4+5)=(400-40)÷
9=360÷
9=40(米)
甲乙两队每天共修的米数:
40×
2+10=80+10=90(米)
两队每天修90米。
9.学校买来6张桌子和5把椅子共付455元,每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×
6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
每把椅子的价钱:
(455-30×
6)÷
(6+5)=(455-180)÷
11=275÷
11=25(元)
每张桌子的价钱:
25+30=55(元)
每张桌子55元,每把椅子25元。
10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
根据的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
(7+65)×
[40÷
(75-65)]=140×
10]=140×
4=560(千米)
甲乙两地相距560千米。
11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?
根据托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。
根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。
(20×
250-4400)÷
(10+20)=600÷
120=5(箱)
损坏了5箱。
12.一中队和二中队要到距学校20千米的地方去春游。
第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。
第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
因第一中队早出发2小时比第二中队先行4×
2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。
(12-4)=4×
8=1(时)
第二中队1小时能追上第一中队。
13.某厂运来一堆煤,如果每天烧1500千克,比方案提前一天烧完,如果每天烧1000千克,将比方案多烧一天。
这堆煤有多少千克?
由条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原方案烧的天数,进而再求出这堆煤的数量。
原方案烧煤天数:
(1500+1000)÷
(1500-1000)=2500÷
500=5(天)
这堆煤的重量:
1500×
(5-1)=1500×
4=6000(千克)
这堆煤有6000千克。
14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。
结果小红却买了8支铅笔和5本练习本,找回0.45元。
求一支铅笔多少元?
小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。
由此可求练习本的单价比铅笔贵的钱数。
从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的那么是(5+8)支铅笔的钱数。
进而可求出每支铅笔的价钱。
每本练习本比每支铅笔贵的钱数:
0.45÷
(8-5)=0.45÷
3=0.15(元)
8个练习本比8支铅笔贵的钱数:
0.15×
8=1.2(元)
每支铅笔的价钱:
(3.8-1.2)÷
(5+8)=2.6÷
13=0.2(元)
15.根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
卡车的数量:
360÷
[10×
(8-6)]=360÷
2]=360÷
30=12(辆)
客车的数量:
(8-6)+10]=360÷
[30+10]=360÷
40=9(辆)
可用卡车12辆,客车9辆。
16.某筑路队承当了修一条公路的任务。
原方案每天修720米,实际每天比原方案多修80米,这样实际修的差1200米就能提前3天完成。
这条公路全长多少米?
根据方案每天修720米,这样实际提前的长度是(720×
3-1200)米。
根据每天多修80米可求已修的天数,进而求公路的全长。
已修的天数:
(720×
3-1200)÷
80=960÷
80=12(天)
公路全长:
(720+80)×
12+1200=800×
12+1200=9600+1200=10800(米)
这条公路全长10800米。
17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。
如果3个纸箱加2个木箱装的鞋同样多。
每个纸箱和每个木箱各装鞋多少双?
根据条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。
12个纸箱相当木箱的个数:
2×
(12÷
3)=2×
4=8(个)
一个木箱装鞋的双数:
1800÷
(8+4)=18000÷
12=150(双)
一个纸箱装鞋的双数:
150×
3=100(双)
每个纸箱可装鞋100双,每个木箱可装鞋150双
18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。
每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
由条件可知道,每天用去30袋水泥,同时用去30×
2袋沙子,才能同时用完。
但现在每天只用去40袋沙子,少用(30×
2-40)袋,这样才累计出120袋沙子。
因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。
进而可求出沙子和水泥的总袋数。
水泥用完的天数:
120÷
(30×
2-40)=120÷
20=6(天)
水泥的总袋数: