基于LabVIEW的变声器设计Word文档下载推荐.doc

上传人:b****3 文档编号:15407664 上传时间:2022-10-30 格式:DOC 页数:6 大小:365KB
下载 相关 举报
基于LabVIEW的变声器设计Word文档下载推荐.doc_第1页
第1页 / 共6页
基于LabVIEW的变声器设计Word文档下载推荐.doc_第2页
第2页 / 共6页
基于LabVIEW的变声器设计Word文档下载推荐.doc_第3页
第3页 / 共6页
基于LabVIEW的变声器设计Word文档下载推荐.doc_第4页
第4页 / 共6页
基于LabVIEW的变声器设计Word文档下载推荐.doc_第5页
第5页 / 共6页
点击查看更多>>
下载资源
资源描述

基于LabVIEW的变声器设计Word文档下载推荐.doc

《基于LabVIEW的变声器设计Word文档下载推荐.doc》由会员分享,可在线阅读,更多相关《基于LabVIEW的变声器设计Word文档下载推荐.doc(6页珍藏版)》请在冰豆网上搜索。

基于LabVIEW的变声器设计Word文档下载推荐.doc

Digitalsignalprocessingtechnologyisofgreatsignificanceinspeechsignalprocessing,isoneoftheprocessingmethodofvoicetransformation.Basedonthetechnicalrequirementsinthevoicechange,thispaperdescribesasynchronousoverlapinpitch(PSOLA)algorithmpremiseresamplingtechniquecombiningvoicetonedoesnotshiftmethod,basedontheanalysisofspecificalgorithmstransformtheoryandontheuseofLabVIEWprogrammingavarietyofvoicefrequencyconversionandmale/femaletransformation.

Keyword:

PSOLA;

resampling;

spectrumshifting;

Voiceconversion

0引言

在音频信号处理中,将源说话人语音中的个性特征转换成目标说话人语音的个性特征的语音信号处理技术,称为语音变换技术。

人的语音说话特征分为音段特性与超音段特性以及语言特性,音段特征包括谱包络,谱激励;

超音段特性包括基频,时长,幅度[1]。

近几年来,语音信号处理技术在实用化方面取得了很多突破性进展,例如,随着在对声学语音学统计模型的深入研究,像语音识别,基于语音段的建模方法等逐渐成为研究热点。

在语音合成方面,基于基音同步叠加(PSOLA)算法的波形编辑和拼接技术得到广泛应用[2],PSOLA算法的优势在于能在不改变语音音段的音质的基础上,能改变体现语音自然度的韵律特征的变化,进而获得更高的清晰度。

语音技术的研究难在语音合成,基音同步叠加(PSOLA)就是最具有代表性的一种方法,它既能保持语音的音段特性,又能在拼接时调整它的基频,强度和时长等超音段特性。

本设计通过LabVIEW设计一个变声仪器,利用PSOLA算法与重采样技术结合,实现音频的变调不变速,以及多种频段变调。

1变声原理

变声即实现音频的变调,进行频谱搬移,改变音频的频率[3]。

为了实现变调不变速,可以先对信号进行变速不变调处理,再进行重采样,由于重采样能够同时改变语音的语速和音调,只要变调因子取值合适,就能使语速恢复正常,只有音调改变,即达到变调不变速的目的。

为此,变声的首要过程就是对信号的变速不变调的处理。

要实现语音的变速不变调有两种方法:

一个是,用窗口函数截取语音信号样本,用傅里叶变换将时域信号转换到频域,然后将信号的频率往低频段压缩,再用傅里叶反变换从频域转换到时域,最后进行重采样(主要是抽点),就可达到语音的变速不变调目的;

另一个是,用傅里叶变换实现语音的压扩,即用傅里叶变换处理语音信号得到对应的频谱分布,然后利用频谱变换函数处理这个频谱分布,得到变换频谱,最后利用傅立叶反变换将信号从频域转换到时域,就能得到变速不变调的语音。

本设计就是利用第二个方法最终实现变声目的。

实现变声的流程框图如图1所示:

语音信号X(n)

傅里叶变换

频谱分布

频谱变换函数处理

处理后的频谱

傅立叶逆变换

变速后的信号

重采样

变声语音信号

图1变声流程图

2基音同步叠加(PSOLA)算法

PSOLA算法是利用短时傅里叶变换重构信号的叠接相加法,分为三个部分:

基音同步分析,基音同步修改和基音同步合成[4]。

2.1基音同步分析

设采集的音频信号为,选择合适的时窗分析窗口对原始合成单元做加窗处理,得到一组短时信号

(1)

(1)中,为基音标注点,一般采用Hamming窗,窗长大于原始信号的一个基音周期,因此窗间有重叠,窗长一般取原始信号基音周期的2~4倍,于是有,

(2)

(2)中,为归一化窗长,为窗覆盖基音周期数的比例系数,为基音周期。

通常情况下,取,能够使合成简化。

若要提高基频,令取为原始分析基音周期;

若要降低基频,令取为合成基音周期,这样能够使得合成简化。

2.2基音同步修改

基音同步修改分为两个方向,一个是在频域内对信号进行音高的修改,另一个是在时域内对原始拼接单元进行时长的修改。

具体地说,对语音基频的修改是通过对合成单元标记间隔的增加,减少进行的;

对语音时长的修改是通过合成单元同步标记的插入,删除进行的。

首先,进行语音基频的修改:

对短时分析信号进行傅里叶变换,得到短时分析傅里叶变换,即

(3)

其中

又有公式:

(4)

其中,为分析音段激励源信号频谱;

为频谱的谱包络部分。

然后,按照音高调整系数对音段激励源信号频谱进行拉伸或压缩,得到合成激励源频谱.将与原始频谱的谱包络相乘得到短时合成傅立叶频谱:

(5)

最后,进行语音时长的修改:

首先对短时合成傅立叶频谱进行傅立叶逆变换,得到中间短时合成信号。

然后对原始拼接单元时长进行修改,得到新的中间短时合成信号,这样,新的基音标注就取代了前面中间短时合成信号的基音标注,当时长调整系数为时,选择合适的使之与最接近,则.因此,合成轴的长度变为分析轴的倍,在保持基频不变的基础上,短时信号间的间隔不变,因而,短时信号的数量相应的改变为原来的倍。

当时长调整系数<1时,则加快语音,需要去掉一些短时信号;

当时长调整系数>1时,则放慢语速,需要重复一些短时信号。

这样就可以得到与新合成信号基音标记同步的短时合成信号序列。

2.3基音同步合成

采用合成信号谱与原始信号谱差异最小的最小平方叠加合成法,合成的信号为:

(6)

其中,分母是时变单位化因子,是合成窗序列,是窗之间时变叠加的能量补偿,是音强调整系数,是用来调整合成语音信号的强度,上式也可简化为:

(7)

式中的分母是时变的单位化因子,用来补偿相邻窗口叠加部分的能量损失。

该因子在宽带条件下,当合成窗长为合成基音周期的两倍时,该因子也为常数;

在窄带条件下接近于常数。

故上式可进一步简化为:

(8)

3重采样

音频信号的采样率为Fs,长度为m个采样点,对信号进行采样因子为P/Q倍的重采样后,信号的样本数就增大或减小了,对该采样过程分为以下三个步骤:

(1).在上采样过程中,对原信号相邻两点内插个零点,创建一个采样点为的信号,当n=1,2,...m时,

否则,X(n)=0.

(2).插值:

和一个低通插值滤波器作卷积.

(3).在下采样过程中,对原信号每隔个点抽取一个点,创建一个有点的信号,当时,,那么重采样信号.在插值算法中,通常采用线性插值。

在重采样的过程中通常会用到窗函数来减少频谱泄漏[5],加窗前后的频谱图如图2,3所示:

图2加窗前的频谱图

图3加窗后的频谱图

4变声器设计

以LabVIEW为平台,对音频数据进行采集,在基因同步叠加算法的理论基础上,以加窗重采样为核心实现变声。

变声器设计如图4,5所示:

图4变声器设计前面板

图5变声器设计程序框图

采样数据时,采样率为22050S/s,通道数为2,每采样比特数为16,采样数为10000,得到原始音频和变声后的时域波形图如图6,7所示:

图6原始信号波形

图7变声后的波形图

在本设计中加了对语音信号的滤波处理[6],滤波前后的波形图如图8,9所示:

图8滤波前的波形图

图9滤波后的波形图

5总结

本设计利用PSOLA算法和重采样技术,基于LabVIEW设计一个多频段的变声器,实现了音频信号的多频段的变声处理,改善了音频的清晰度,并实现了语速的同步,但仍然存在一些问题有待完善,比如声音的仿人程度不逼真,随着语音变换技术的深入研究和发展,基因同步叠加技术与重采样在LabVIEW平台上必将得到更加广泛的应用。

参考文献:

[1]罗小冬,裘雪红,刘凯.语音信号的基音标注算法[J].计算机与现代化,2003,1:

3-5.

[2]黎子芬,谢晓方,林丽娜,刘剑锋.基于TD-PSOLA算法的语音合成方法研究[J].海军航空工程学院学报,2008,1:

101-104.

[3]彭柏,许刚.利用频谱搬移控制语音转换中的共振峰[J].语音技术,2007,31

(1):

39-43.

[4]涂相华,蔡莲红.用于语音合成的PSOLA算法简介[J].微型计算机,1996,16(4):

5-9.

[5]邓淼,王磊等编著.LabVIEW7.1测试技术与仪器应用[M].北京:

机械工业出版社,2004,7:

248-250.

[6]陈栋,崔秀华.虚拟仪器应用设计[M].西安:

西安电子科技大学出版社,2009,12:

51-54.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 工作计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1