反三角函数与最简三角方程Word文档下载推荐.docx

上传人:b****1 文档编号:15322634 上传时间:2022-10-29 格式:DOCX 页数:15 大小:712.76KB
下载 相关 举报
反三角函数与最简三角方程Word文档下载推荐.docx_第1页
第1页 / 共15页
反三角函数与最简三角方程Word文档下载推荐.docx_第2页
第2页 / 共15页
反三角函数与最简三角方程Word文档下载推荐.docx_第3页
第3页 / 共15页
反三角函数与最简三角方程Word文档下载推荐.docx_第4页
第4页 / 共15页
反三角函数与最简三角方程Word文档下载推荐.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

反三角函数与最简三角方程Word文档下载推荐.docx

《反三角函数与最简三角方程Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《反三角函数与最简三角方程Word文档下载推荐.docx(15页珍藏版)》请在冰豆网上搜索。

反三角函数与最简三角方程Word文档下载推荐.docx

反正弦函数

奇函数

增函数

反余弦函数

非奇非偶

减函数

反正切函数

R增

反余切函数

R减

其中:

(1).符号arcsinx可以理解为[-,]上的一个角(弧度),也可以理解为区间[-,]上的一个实数;

同样符号arccosx可以理解为[0,π]上的一个角(弧度),也可以理解为区间[0,π]上的一个实数;

(2).y=arcsinx等价于siny=x,y∈[-,],y=arccosx等价于cosy=x,x∈[0,π],这两个等价关系是解反三角函数问题的主要依据;

(3).恒等式:

sin(arcsinx)=x,x∈[-1,1],cos(arccosx)=x,x∈[-1,1],

arcsin(sinx)=x,x∈[-,],arccos(cosx)=x,x∈[0,π]

arcsinx+arccosx=,arctanx+arccotx=。

 

最简单的三角方程

方程

方程的解集

(1).含有未知数的三角函数的方程叫做三角方程。

解三角方程就是确定三角方程是否有解,如果有解,求出三角方程的解集;

(2).解最简单的三角方程是解简单的三角方程的基础,要在理解三角方程的基础上,熟练地写出最简单的三角方程的解;

(3).要熟悉同名三角函数相等时角度之间的关系在解三角方程中的作用;

如:

若,则;

若,则;

(4).会用数形结合的思想和函数思想进行含有参数的三角方程的解的情况和讨论。

二、典型例题:

例1.

例2.

例3.

例4.使成立的x的取值范围是()

例5.

例6.求值:

(1)

(2)

分析:

问题的关键是能认清三角式的含义及运算次序,利用换元思想转化为三角求值。

例7.画出下列函数的图像

(1)

(2)

例8.已知求(用反三角函数表示)分析:

可求的某一三角函数值,再根据的范围,利用反三角函数表示角。

例9.已知函数

(1)求函数的定义域、值域和单调区间;

(2)解不等式:

例10.写出下列三角方程的解集

(1);

(2);

(3)

例11.求方程在上的解集.

例12.解方程

例13. 

解方程①

例14.解方程:

思考:

引入辅助角,化为最简单的三角方程

例15.解方程.

例16.解方程:

例17.已知方程在区间上有且只有两个不同的解,求实数a的取值范围。

[说明]对于两个相等的同名三角函数所组成的三角方程,可直接利用以下关系得到方程的解.

(1),则或;

(2),则或;

(3),则.

参考答案:

典型例题:

例1.分析与解:

例2.分析与解:

例3.分析与解:

例4.分析与解:

该题研究不等关系,故需利用函数的单调性进行转化,又因为求x的取值范围,故需把x从反三角函数式中分离出来,为此只需对arcsinx,arccosx同时取某一三角函数即可,不妨选用正弦函数。

例5.分析与解:

这是三角函数的反三角运算,其方法是把角化到相应的反三角函数的值域内。

例6.解:

例7.

(1)函数是以为周期的周期函数

当时,

当时,其图像是折线,如图所示:

(2)∵

其图像为单位圆的上半圆(包括端点)如图所示:

例8.解:

∵∴

又∵∴

∵∴

又∵∴

又∵∴∴

从而

讲评:

由题设,得由计算

∴,但是确定的角,因而的值也是唯一确定的。

所以必须确定所在的象限,在以上的解法中,由的范围,再根据的值,进一步得到从而确定,故得出正确的答案:

例9.解:

(1)由得又

∴的定义域为,值域为

又∵时,单调递减,单调递减,从而递增

∴的单调递增区间是,同理的单调递减区间是

(2)

∴解不等式组得∴不等式的解集为

例10.

解集{x|x=(kπ+arctg3)2,k∈Z}

例11.

说明 

如何求在指定区间上的解集?

(1)先求出通解,

(2)让k取适当的整数,一一求出在指定区间上的特解,(3)写指定区间上的解.

例12.解:

方程化为

可化为关于某一三角函数的二次方程,然后按二次方程解.

例13.

②除以cos2x化为2tg2x-3tgx-2=0.

关于sinx,cosx的齐次方程的解法:

方程两边都除cosnx(n=1,2,3,…)(∵cosx=0不是方程的解),转化为关于tgx的方程来解.

例14.思考:

2x-30°

=k180°

+(-1)k30°

∴x=k90°

+(-1)k15°

+15°

(k∈Z)所以解集是

{x|x=k90°

,k∈Z}

于是x=k60°

+(-1)k10°

+22°

38′,(k∈Z)

∴原方程的解集为{x|x=k60°

(-1)k10°

38′,k∈Z}

最简单的三角方程.

例15.解原方程可化为,

即.

解这个关于的二次方程,得

,.

由,得解集为;

由,得解集为.

所以原方程的解集为.

[说明]方程中的可化为,这样原方程便可看成以为未知数的一元二次方程,当时,可用因式分解将原方程转化成两个最简方程,从而求得它们的解.

例16.解:

tg(x+)+tg(x-)=2ctgx………①∴+=………②,

去分母整理得tg2x=,tgx=±

∴x=kπ±

k∈Z,

由①根据定义知x+≠kπ+,x-≠kπ+,x≠kπ,k∈Z,

即x≠kπ+,x≠kπ+,x≠kπ,而②中又增加了限制条件x=kπ+,k∈Z,

即从①到②有可能丢根,x=kπ+,经验算x=kπ+是原方程的根,

∴原方程的解集是{x|x=x=kπ±

或x=kπ+,k∈Z}

例17.解:

由sinx+cosx+a=0得2sin(x+)=-a,sin(x+)=-,-2≤a≤2

∵x∈[0,2π],∴x+∈[,2π+],

又原方程有且只有两个不同的解,∴a≠2,a≠-2,即|a|=2时,原方程只有一解;

又当a=-时,sin(x+)=,得x+=或或,

解得x=0或x=或x=2π,此时原方程有三个解,∴a∈(-2,-)∪(-,2).

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 育儿知识

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1