单相桥式全控整流电路课程设计Word格式.docx

上传人:b****1 文档编号:15310575 上传时间:2022-10-29 格式:DOCX 页数:17 大小:520.46KB
下载 相关 举报
单相桥式全控整流电路课程设计Word格式.docx_第1页
第1页 / 共17页
单相桥式全控整流电路课程设计Word格式.docx_第2页
第2页 / 共17页
单相桥式全控整流电路课程设计Word格式.docx_第3页
第3页 / 共17页
单相桥式全控整流电路课程设计Word格式.docx_第4页
第4页 / 共17页
单相桥式全控整流电路课程设计Word格式.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

单相桥式全控整流电路课程设计Word格式.docx

《单相桥式全控整流电路课程设计Word格式.docx》由会员分享,可在线阅读,更多相关《单相桥式全控整流电路课程设计Word格式.docx(17页珍藏版)》请在冰豆网上搜索。

单相桥式全控整流电路课程设计Word格式.docx

 

前言

电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管)对电能进行变换和控制的技术。

电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。

通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现电能使用最佳化。

电力电子技术分为电力电子器件制造技术和变流技术(整流,逆变,斩波,变频,变相等)两个分支。

变流技术也称为电力电子技术的应用技术,它包括用电力电子器件构成各种电力变换电路和对这些电路进行控制的技术,以及由这些电路构成电力电子装置和电力电子系统的技术。

变流技术是电力电子技术的核心,变流技术的理论基础是电路理论。

整流电路是电力电子电路的一种,将交流电变为直流电,应用十分广泛,电路形式多种多样。

按组成器件可分为不可控、半控、全控三种;

按电路结构可分为桥式和零式电路;

按交流输入相数分为单相电路和多相电路。

这次课程设计我们设计的是单相桥式全控整流电路,与单相半波可控整流电路相比,桥式全控的电源利用率高一些,应用范围更广。

第1章课程设计的任务书

1.1课程设计的主要任务

“电力电子技术”课程设计是在教学及试验的基础上,对课程所学理论知识的深化和提高。

因此,通过电力电子的课程设计达到以下几个目的

1)培养综合应用所学知识,并初步设计出具有电压可调功能的直流电源系统的能力。

2)较全面地巩固和应用本课程所学知识和基本方法,初步掌握整流电路的设计方法。

3)培养独立思考,独立收集材料,独立实际的能力。

4)熟悉电力电子技术的课程和一些相关知识。

1.2课程设计的总体要求

1)负载:

电阻电感性负载

2)电感L=700mh,R=500

3)电网提供的电压为220V,50H

4)输出电压0—100V输出功率1KW

5)移相范围0—900

第2章方案选择

2.1主电路的认证

单相相控电路可分为单相半波、单相全波和单相桥式和整流电路,它们的所连接负载性质不同就有不同的特点,而负载性质又分为带电阻性的负载,电阻—电感性负载和反电动势负载的工作情况。

本组所做的是单相桥式全控整流电路。

与单相桥式半空整流电路相比,无需接续流二极管,也不会出现失控的现象,负载形式多样,整流效果好,波形平稳,应用广泛。

变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。

单相全控桥式整流电路具有输出电流脉动小,功率因数提高,变压器二次侧电流为两个等大反向的半波,没有直流磁化的问题,变压器利用率高的优点。

单相全控桥式整流电路其输出平均电压是半波电路的2倍,在相同的负载下流过晶闸管的平均电流减小一半,且功率因数提高了一半。

2.2触发电路的要求及选择

1.对触发电路的要求

为了保证可靠地触发,对触发电路的要求是:

(1)触发脉冲上升沿要陡,以保证触发时刻的准确;

(2)触发脉冲电压幅度必须满足要求,一般为4~10V;

(3)触发脉冲要有足够的宽度,以保证可靠触发;

(4)为避免误导通,不触发时,触发输出的漏电压小于0.2V;

(5)触发脉冲必须与主电路的交流电源同步,以保证晶闸管在每个周期的同一时刻触发。

常见的触发脉冲电压波形

图2.2.1

2触发电路的选择

晶闸管的导通控制信号由触发电路提供,触发电路的类型按组成器件分为:

1)单结晶体管触发电路、

图2.2.2

上图为单结晶体管

a)结构示意b)等效电路c)图形符号d)外形及管脚

用万用表来判别单结晶体管的好坏:

选择R×

1k电阻挡进行测量,若某个电极与另外两个电极的正向电阻小于反向电阻,则该电极为发射极e,接着测量另外两个电极的正反向电阻值应该相等。

优点:

单结晶体管触发电路结构简单,调节方便,输出脉冲前沿陡,抗干扰能力强,对于控制精度要求不高的小功率系统,可采用单结晶体管触发电路来控制;

缺点

不能直接用于触发电路,必须有同步电路和张弛震荡电路。

只能产生窄脉冲,输出功率小,移相范围也小,常用于50A以下的单相电路。

图2.2.3单结晶体管触发电路

2)晶体管触发电路、集成触发电路。

图2.2.4KC41六路双窄脉冲形成器

图2.2.5KCZ6集成六脉冲触发电路

优点:

减少了触发电源功率和脉冲变压器的体积,提高了脉冲前沿陡度。

具有脉冲占空比可调性好,频率调节宽,触发上升沿可与调节信号同步。

集成触发电路

1)同步电压值范围较宽且只需三相同步电压。

2)输出是脉冲列式的双脉冲,脉冲电压体积小。

3)体积小维修方便等。

对于大容量晶闸管一般采用晶体管或集成电路组成的触发电路。

2.3保护电路的选择

电力电子系统在发生故障时可能会发生过电流、过压,造成开关器件的永久性损坏。

过流、过压保护包括器件保护和系统保护两个方面。

检测开关器件的电流、电压,保护主电路中的开关器件,防止过流、过压损坏开关器件。

检测系统电源输入、输出以及负载的电流、电压,实时保护系统,防止系统崩溃而造成事故。

1过电压的产生

电力电子装置可能的过电压——外因过电压和内因过电压

外因过电压:

主要来自系统操作过程和雷击等外因

a操作过电压:

由分闸、合闸等开关操作引起

b雷击过电压:

由雷击引起

内因过电压:

主要来自电力电子装置内部器件的开关过程

a换相过电压:

晶闸管或与全控型器件反并联的续流二极管在换相结束后,不能立即恢复阻断能力,有较大的反向电流流过,当恢复阻断能力后,反向电流急剧减小,b会因线路电感在器件两端感应出过电压。

c关断过电压:

全控型器件关断时,正向电流迅速降低而由线路电感在器件两端感应出的过电压。

2过压保护方法

(1)过压保护的基本原则是:

根据电路中过压产生的不同部位,加入不同的附加电路,当达到—定过压值时,自动开通附加电路,使过压通过附加电路形成通路,消耗过压储存的电磁能量,从而使过压的能量不会加到主开关器件上,保护了电力电子器件。

保护电路形式很多,也很复杂。

图2.3.1

(2)雷击过压可在变压器初级接避雷器加以保护。

(3)二次电压很高或电压比很大的变压器,一次侧合闸时,由于一次、二次绕组间存在分布电容,高电压可通过分布电容耦合到二次侧而出现瞬时过压。

可采取变压器附加屏蔽层接地或变压器星形中点通过电容接地的方法来减小。

(4)泵升电压保护当电动机回馈制动时,电动机的动能转换成电能回馈到直流侧,引起直流侧电压升高,当电压升高到一定值时,会造成变换器的过电压。

通常采用开关电路将能量消耗在电阻上。

(5)阻容保护电路

将电容并联在回路中,当电路中出现电压尖峰电压时,电容两端电压不能突变的特性,可以有效地抑制电路中的过压。

与电容串联的电阻能消耗掉部分过压能量,同时抑制电路中的电感与电容产生振荡。

RC阻容保护电路可以设置在变换器装置的交流侧、直流侧。

也可将RC保护电路直接并在主电路的元件上,有效地抑制元件关断时的关断过压,其接法如图6-2所示。

图2.3.2

(6)非线性电阻保护。

非线性电阻具有近似稳压管的伏安特性,可把浪涌电压限制在电力电子器件允许的电压范围。

现在常采用压敏电阻实现过压保护。

压敏电阻是一种金属氧化物的非线性电阻,它具有正、反两个方向相同但很陡的伏安特性。

正常工作时漏电流很小(微安级),故损耗小。

当过压时,可通过高达数千安的放电电流IY,因此抑制过压的能力强。

此外,它对浪涌电压反应快,而且体积小,是一种较好的过压保护器件。

它的主要缺点是持续平均功率很小,如正常工作电压超过它的额定值,则在很短时间内就会烧毁。

由于压敏电阻的正、反向特性对称,因此单相电路只需一个,三相电路用3个,联接成Y形或Δ形

图2.3.3

压敏电阻保护的接法

3过电流保护电路

1.引起过流的原因

当电力电子变换器内部某一器件击穿或短路、触发电路或控制电路发生故障、出现过载、直流侧短路、可逆传动系统产生环流或逆变失败,以及交流电源电压过高或过低、缺相等,均可引起变换器内元件的电流超过正常工作电流,即出现过流。

由于电力电子器件的电流过载能力比一般电气设备差得多,因此,必须对变换器进行适当的过流保护。

变换器的过流一般主要分为两类:

过载过流和短路过流.过电流——过载和短路两种情况.

2保护措施

图2.3.4

(1)交流进线电抗器(图中的L),或采用漏抗大的整流变压器,利用电抗限制短路电流。

但正常工作时有较大的交流压降。

(2)电流检测装置(图中的B)。

过流时发出信号,过流信号一方面可以封锁触发电路,使变换器的故障电流迅速下降至零,从而有效抑制了电流。

另一方面控制过电继电器,使交流接触器触点跳开,切断电源。

但过流继电器和交流接触器动作都需一定时间(100~200ms)。

故只有电流不大的情况这种保护才能奏效。

(3)直流快速开关(图中的QDCF)。

对于大、中容量变换器,快速熔断器的价格高且更换不方便。

为避免过流时烧断快速熔断器,采用动作时间只2ms的直流快速开关,它可先于快速熔断器动作而保护电力电子器件。

(4)快速熔断器(图中的FUF)

快速熔断器是防止变换器过流损坏的最后一道防线。

在晶闸管变换器中,快速熔断器是应用最普遍的过流保护措施,可用于交流侧、直流侧和装置主电路中。

其中交流侧接快速熔断器能对晶闸管元件短路及直流侧短路起保护作用,但要求正常工作时,快速熔断器电流定额要大于晶闸管的电流定额,这样对元件的短路故障所起的保护作用较差。

直流侧接快速熔断器只对负载短路起保护作用,对元件无保护作用。

只有晶闸管直接串接快速熔断器才对元件的保护作用最好,因为它们流过同—个电流.因而被广泛使用。

图2.3.5快速熔断器在电路中的接法

同时采用几种过电流保护措施,提高可靠性和合理性。

电子电路作为第一保护措施,快熔仅作为短路时的部分区段的保护,直流快速断路器整定在电子电路动作之后实现保护,过电流继电器整定在过载时实现保护。

1.对一些重要的且易发生短路的晶闸管设备,或者工作频率较高、很难用快速熔断器保护的全控型器件,需采用电子电路进行过电流保护。

2.常在全控型器件的驱动电路中设置过电流保护环节,这对器件过电流响应是最快.

4缓冲电路(SnubberCircuit):

又称吸收电路,其作用是抑制器件的内因过电压、du/dt或者过电流和di/

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 小学作文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1