基于BTS7960B车门控制模块的电动车窗的设计Word格式.doc
《基于BTS7960B车门控制模块的电动车窗的设计Word格式.doc》由会员分享,可在线阅读,更多相关《基于BTS7960B车门控制模块的电动车窗的设计Word格式.doc(6页珍藏版)》请在冰豆网上搜索。
16位微控制器XC164CS基于增强C166SV2结构,结合了RISC和CISC处理器的优点,并且通过MAC单元的DSP功能实现了强大的计算和控制能力。
XC164CS把功能强劲的CPU内核和一整套强大的外设单元集成于一块芯片上,使得连接变得非常有效和方便。
电动车窗采用两个半桥智能功率驱动芯片BTS7960B组合成一个H桥驱动,中央门锁、后视镜和加热器的驱动芯片分别采用TLE6208-3G、BTS7741G和BSP752R,车灯的驱动芯片采用BTS724。
这些器件已提供了完善的故障检测及保护功能,因而避免了采用过多的分立元件,大大减小了模块体积,并提高了模块的EMC(电磁兼容)特性。
车门控制模块的电路主要由以下几部分组成:
电源电路、电动车窗驱动电路、后视镜驱动电路、加热器驱动电路、中央门锁驱动电路、车灯驱动电路、CAN总线接口电路及按键接口电路等。
电动车窗的硬件设计
1电动车窗驱动电路及启动特性
本车窗控制系统通过智能功率芯片BTS7960驱动直流电机转动,BTS7960的接口电路如图2所示。
图中的引脚7960INH1、7960IN1、7960IS1、7960INH2、7960IN2和7960IS2分别连接到XC164CS的I/0口P9.4、P1L.4、P5.6、P9.5、P1L.5和P5.7。
图2BTS7960接口连线图
BTS7960是应用于电机驱动的大电流半桥高集成芯片,它带有一个P沟道的高边MOSFET、一个N沟道的低边MOSFET和一个驱动IC。
P沟道高边开关省去了电荷泵的需求,因而减小了EMI。
集成的驱动IC具有逻辑电平输入、电流诊断、斜率调节、死区时间产生和过温、过压、欠压、过流及短路保护的功能。
BTS7960通态电阻典型值为16mΩ,驱动电流可达43A。
因此即使在北方寒冷的冬天,仍能保证车窗的安全启动。
如图3所示,两片BTS7960构成全桥驱动车窗上升或下降。
T1和T4导通时,车窗上升;
T2和T3导通时,车窗下降。
系统没有主动制动过程,车窗移好之后,上管触发信号停,通过该桥臂下管反并联二极管续流,直到电流为0A。
续流过程持续250ms,足以满足车窗电机大功率的需求。
为了避免车窗电机启动瞬间出现电流尖峰,通过对下桥臂开关管进行频率为20kHz的PWM信号控制,实现软启动功能。
2BTS7960故障检测特性
如图3所示,BTS7960的芯片内部为一个半桥。
INH引脚为高电平,使能BTS7960。
IN引脚用于确定哪个MOSFET导通。
IN=1且INH=1时,高边MOSFET导通,OUT引脚输出高电平;
IN=0且INH=1时,低边MOSFET导通,OUT引脚输出低电平。
SR引脚外接电阻的大小,可以调节MOS管导通和关断的时间,具有防电磁干扰的功能。
IS引脚是电流检测输出引脚。
图3全桥驱动电路示意图
BTS7960的引脚IS具有电流检测功能。
正常模式下,从IS引脚流出的电流与流经高边MOS管的电流成正比,若RIS=1kΩ,则VIS=Iload/8.5;
在故障条件下,从IS引脚流出的电流等于IIS(lim)(约4.5mA),最后的效果是IS为高电平。
如图4所示,图(a)为正常模式下IS引脚电流输出,图(b)为故障条件下IS引脚上的电流输出。
BTS7960短路故障实验的实验条件如下:
+12.45V电池电压,+5V电源供电,2.0m短路导线(R=0.2Ω),横截面积为0.75mm,连接1kΩ电阻和一个发光二极管。
VS与电池正极间导线长1.5m(R=0.15Ω)。
如图5所示,其中VIS是IS引脚对地的电压、VL是OUT引脚对地电压,IL为发生对地短路故障时,流过BTS7960的短路电流。
(a)
(b)
图4BTS7960电流检测引脚IS的工作原理图
无论是先上电后短路还是先短路后上电,BTS7960都呈现出相同的保护特性,所以下文将只就其一进行讲述。
图5BTS7960的对地短路实验电路图
图6和图7分别为BTS7960先短路后上电短路实验波形图的前半部分和后半部分。
短路瞬间输出端电流迅速上升,在80μs的时间内,电流上升到峰值,可达62A左右。
此时,BTS7960检测出短路故障,关断MOS管,输出电流下降直至0A,紫色箭头所指部分有明显的关断,图中虚线所夹部分为MOS管的关断及维持关断的过程,整个过程持续时间约为80μs。
短路导通瞬间,OUT引脚输出电压为5V左右,这是短路导线与电池和地之间的总电阻的分压值;
MOS管关断期间,OUT引脚输出电压为0V。
在电流急剧下降的瞬间,短路导线上感应出微弱的反向电动势,所以OUT引脚输出电压会呈现出短时间负电压。
状态检测引脚IS在5V左右上下波动,其具有随短路电流上下波动的特点。
整个短路过程中,BTS7960周期性的关断MOS管,防止短路电流使芯片持续升温,导致芯片过热烧毁,从而有效地保护了芯片。
最后,BTS7960完全关断MOS管,短路电流缓降为0A,IS管脚在MOS管完全关断后约500μs由自身的冷却恢复至正常电平。
图2BTS7960短路实验波形图前半部分
图7BTS7960短路实验波形后半部分
电动车窗的软件设计
1驱动芯片BTS7960的软件设计
电动车窗部分,在硬件上通过BTS7960驱动直流电机转动,使窗上升或下降。
采用两片BTS7960B构成全桥工作。
BTS7960与微控制器的接口信号包括IN1、IN2、INH1和INH2;
IS1和IS2是电流检测信号。
车窗上升:
IN1=1,IN2=0,INH1/2=1;
车窗下降:
IN1=0,IN2=1,INH1/2=1。
整个驱动过程可分为软启动、满PWM输出、续流和停止四个阶段。
车窗升降过程通过对下桥臂开关管进行PWM控制实现软启动功能,PWM频率为20kHz,软启动持续200ms,在这一过程中,占空比逐渐增大,从0%增加到100%,分成10段,每段持续时间为20ms。
PWM信号是施加在下管所在桥臂的INH引脚上,该桥臂关断(INH=0)时电流通过上管的反并二极管续流。
经PWM信号实现软启动后,电动车窗启动时的电流波形如图8所示。
从图中可以看出,电流尖峰被有效抑制。
本系统没有主动制动过程,车窗移好之后,开关管还会工作大约250ms,这是续流过程,这期间,上管触发信号停,通过该桥臂下管反并联二极管续流(这时需继续给原来另一桥臂的下管触发信号,如正续流时:
IN1=1,INH1=0,IN2=0,INH2=1),直到电流为0。
但是如果出现过热,这种续流过程就不需要了。
电机堵转是不允许的,因为这样会出现过流。
BTS7960自身可以检测开关管的电流,通过2.2kΩ的采样电阻电流进行电流/电压转换,采样电压经过简单的RC滤波网络,经过一个保护电阻(未加入)送到AN0/AN1进行模数转换。
当检测到电流大于15A时,就可以判断出电机正处于堵转状态,此时微控制器停止触发电机(仍需续流),用户可以重新启动车窗。
车窗部分要检测的故障有上桥臂的两个开关管过热和负载开路。
检测方法一是通过BTS7960内置的温度检测功能来检测上管的过热,发生过热时器件自动关断所有输出电路,且IS引脚输出电平为高;
二是需要辅助晶体管检测开路,通过检测IS引脚电流值可以实现,需要微控制器提供CTRLWIN信号。
图8电动车窗软启动电流波形
2电动车窗主程序的软件设计
本电动车窗控制系统的软件控制是基于状态的转换。
通过比较系统状态与控制命令做出判断,确定出目前系统应该执行的动作。
程序中将电动车窗的运行状态做了如下划分:
WINDOW_OFF、WINDOW_UP_PWM、WINDOW_UP、WINDOW_UP_FREE、WINDOW_UP_STOP、WINDOW_DOWN_PWM、WINDOW_DOWN、WINDOW_DOWN_FREE和WINDOW_DOWN_STOP。
当电动车窗处于OFF状态,接收到上升或下降的命令,程序会使车窗先进入PWM渐增的状态,实现软启动。
当达到PWM满占空比时,车窗才转入UP或DOWN的状态。
若在PWM渐增状态或PWM满占空比运行时接收到要让电动车窗停下或要反方向转的命令,程序会让车窗进入续流状态。
续流完成,车窗进入STOP状态。
在任何状态下如果检测到开路或过压等故障,车窗会进入OFF状态。