小学数学三年级奥数50题Word下载.docx

上传人:b****2 文档编号:15229426 上传时间:2022-10-28 格式:DOCX 页数:15 大小:23KB
下载 相关 举报
小学数学三年级奥数50题Word下载.docx_第1页
第1页 / 共15页
小学数学三年级奥数50题Word下载.docx_第2页
第2页 / 共15页
小学数学三年级奥数50题Word下载.docx_第3页
第3页 / 共15页
小学数学三年级奥数50题Word下载.docx_第4页
第4页 / 共15页
小学数学三年级奥数50题Word下载.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

小学数学三年级奥数50题Word下载.docx

《小学数学三年级奥数50题Word下载.docx》由会员分享,可在线阅读,更多相关《小学数学三年级奥数50题Word下载.docx(15页珍藏版)》请在冰豆网上搜索。

小学数学三年级奥数50题Word下载.docx

即可求甲比乙每小时快多少千米。

4=8÷

4=2(千米)

甲每小时比乙快2千米。

4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?

根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷

2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

0.6÷

[13-(13+7)÷

2]=0.6÷

[13—20÷

3=0.2(元)

每支铅笔0.2元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?

(交换乘客的时间略去不计)

根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。

根据两车的速度和行驶的时间可求两车行驶的总路程。

下午2点是14时。

往返用的时间:

14-8=6(时)

两地间路程:

(40+45)×

2=85×

2=255(千米)

两地相距255千米。

6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?

第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]千米,也就是第一组要追赶的路程。

又知第一组每小时比第二组快(4.5-3.5)千米,由此便可求出追赶的时间。

第一组追赶第二组的路程:

3.5-(4.5-3.5)=3.5-1=2.5(千米)

第一组追赶第二组所用时间:

2.5÷

(4.5-3.5)=2.5÷

1=2.5(小时)

第一组2.5小时能追上第二小组。

7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。

若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

乙仓存粮:

(32.5×

2+5)÷

(4+1)=(65+5)÷

5=70÷

5=14(吨)

甲仓存粮:

14×

4-5=56-5=51(吨)

甲仓存粮51吨,乙仓存粮14吨。

8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?

根据甲队每天比乙队多修10米,可以这样考虑:

如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。

由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

乙每天修的米数:

(400-10×

4)÷

(4+5)=(400-40)÷

9=360÷

9=40(米)

甲乙两队每天共修的米数:

40×

2+10=80+10=90(米)

两队每天修90米。

9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×

6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

每把椅子的价钱:

(455-30×

6)÷

(6+5)=(455-180)÷

11=275÷

11=25(元)

每张桌子的价钱:

25+30=55(元)

每张桌子55元,每把椅子25元。

10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

(75+65)×

[40÷

(75-65)]=140×

10]=140×

4=560(千米)答:

甲乙两地相距560千米。

11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?

根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。

根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。

(20×

250-4400)÷

(100+20)=600÷

120=5(箱)

损坏了5箱。

12.五年级一中队和二中队要到距学校20千米的地方去春游。

第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?

因第一中队早出发2小时比第二中队先行4×

2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。

(12-4)=4×

8=1(时)

第二中队1小时能追上第一中队。

13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。

这堆煤有多少千克?

由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。

原计划烧煤天数:

(1500+1000)÷

(1500-1000)=2500÷

500=5(天)

这堆煤的重量:

1500×

(5-1)=1500×

4=6000(千克)

这堆煤有6000千克。

14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。

结果小红却买了8支铅笔和5本练习本,找回0.45元。

求一支铅笔多少元?

打算买的铅笔和本子总数与实际买的铅笔本子总数是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。

由此可求练习本的单价比铅笔贵的钱数。

从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。

进而可求出每支铅笔的价钱。

每本练习本比每支铅笔贵的钱数:

0.45÷

(8-5)=0.45÷

3=0.15(元)

8个练习本比8支铅笔贵的钱数:

0.15×

8=1.2(元)

每支铅笔的价钱:

(3.8-1.2)÷

(5+8)=2.6÷

13=0.2(元)

15.学校组织外出参观,参加的师生一共360人.一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等.都乘卡车需要几辆?

都乘大客车需要几辆?

根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

卡车的数量:

360÷

[10×

(8-6)]=360÷

2]=360÷

30=12(辆)

客车的数量:

(8-6)+10]=360÷

[30+10]=360÷

40=9(辆)

可用卡车12辆,客车9辆。

16.某筑路队承担了修一条公路的任务。

原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。

这条公路全长多少米?

根据计划每天修720米,这样实际提前的长度是(720×

3-1200)米。

根据每天多修80米可求已修的天数,进而求公路的全长。

已修的天数:

(720×

3-1200)÷

80=960÷

80=12(天)

公路全长:

(720+80)×

12+1200=800×

12+1200=9600+1200=10800(米)

这条公路全长10800米。

17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。

如果3个纸箱和2个木箱装的鞋同样多。

每个纸箱和每个木箱各装鞋多少双?

根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。

12个纸箱相当木箱的个数:

(12÷

3)=2×

4=8(个)

一个木箱装鞋的双数:

1800÷

(8+4)=1800÷

12=150(双)

一个纸箱装鞋的双数:

150×

3=100(双)

每个纸箱可装鞋100双,每个木箱可装鞋150双

18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。

每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?

由已知条件可知道,每天用去30袋水泥,同时用去30×

2袋沙子,才能同时用完。

但现在每天只用去40袋沙子,少用(30×

2-40)袋,这样才累计出120袋沙子。

因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。

进而可求出沙子和水泥的总袋数。

水泥用完的天数:

120÷

(30×

2-40)=120÷

20=6(天)

水泥的总袋数:

30×

6=180(袋)

沙子的总袋数:

180×

2=360(袋)

运进水泥180袋,沙子360袋。

19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。

每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?

根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。

这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。

每个茶杯的价钱:

90÷

(4×

5+10)=3(元)

每个保温瓶的价钱:

4=12(元)

每个保温瓶12元,每个茶杯3元。

20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。

这两个数分别是多少?

已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。

第一个加数:

572÷

(10+1)=52,第二个加数:

52×

10=520

这两个加数分别是52和520。

21.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克?

解题思路

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 动态背景

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1