82101026李新柱汽车线控制动技术的发展及应用Word格式.docx
《82101026李新柱汽车线控制动技术的发展及应用Word格式.docx》由会员分享,可在线阅读,更多相关《82101026李新柱汽车线控制动技术的发展及应用Word格式.docx(30页珍藏版)》请在冰豆网上搜索。
汽车检测与维修技术
班级
821010
指导教师
张彦明讲师
顾问教师
二〇一二年十一月
摘要
现代汽车制动控制技术正朝着线控制动控制方向发展,线控制动系统将取代以液压或气压为主的传统制动控制系统。
介绍了汽车线控制动技术的研究现状,对电子液压式制动系统和电子机械式制动系统的结构及工作原理进行了介绍和比较,阐述了电子液压式制动系统的使用现状,并对相关车型的ABS、ASR、ESP和SBC等系统的故障进行了诊断分析。
对电子机械式制动系统的关键部件及其性能特点进行了分析,论述了线控制动系统的关键技术及发展。
关键词:
线控制动;
EHB;
EMB;
应用;
检修
第一章汽车制动技术概述
1.1制动控制系统的历史
最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。
这时,开始出现真空助力装置。
1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。
林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。
随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。
DuisenbergEight车率先使用了轿车液压制动器。
克莱斯勒的四轮液压制动器于1924年问世。
通用和福特分别于1934年和1939年采用了液压制动技术。
到20世纪50年代,液压助力制动器才成为现实。
20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。
ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。
它的安装大大提高了汽车的主动安全性和操纵性。
防抱装置一般包括三部分:
传感器、控制器(电子计算机)与压力调节器。
传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规定的数值进行比较后,给压力调节器发出指令。
1936年,博世公司申请一项电液控制的ABS装置专利促进了防抱制动系统在汽车上的应用。
1969年的福特使用了真空助力的ABS制动器;
1971年,克莱斯勒车采用了四轮电子控制的ABS装置。
这些早期的ABS装置性能有限,可靠性不够理想,且成本高。
1979年,默·
本茨推出了一种性能可靠、带有独立液压助力器的全数字电子系统控制的ABS制动装置。
1985年美国开发出带有数字显示微处理器、复合主缸、液压制动助力器、电磁阀及执行器“一体化”的ABS防抱装置。
随着大规模集成电路和超大规模集成电路技术的出现,以及电子信息处理技术的高速发展,ABS以成为性能可靠、成本日趋下降的具有广泛应用前景的成熟产品。
1992年ABS的世界年产量已超过1000万辆份,世界汽车ABS的装用率已超过20%。
一些国家和地区(如欧洲、日本、美国等)已制定法规,使ABS成为汽车的标准设备。
1.2制动系统的现状
当考虑基本的制动功能量,液压操纵仍然是最可靠、最经济的方法。
即使增加了防抱制动(ABS)功能后,传统的“油液制动系统”仍然占有优势地位。
但是就复杂性和经济性而言,增加的牵引力控制、车辆稳定性控制和一些正在考虑用于“智能汽车”的新技术使基本的制动器显得微不足道。
传统的制动控制系统只做一样事情,即均匀分配油液压力。
当制动踏板踏下时,主缸就将等量的油液送到通往每个制动器的管路,并通过一个比例阀使前后平衡。
而ABS或其他一种制动干预系统则按照每个制动器的需要时对油液压力进行调节。
目前,车辆防抱制动控制系统(ABS)已发展成为成熟的产品,并在各种车辆上得到了广泛的应用,但是这些产品基本都是基于车轮加、减速门限及参考滑移率方法设计的。
方法虽然简单实用,但是其调试比较困难,不同的车辆需要不同的匹配技术,在许多不同的道路上加以验证;
从理论上来说,整个控制过程车轮滑移率不是保持在最佳滑移率上,并未达到最佳的制动效果。
另外,由于编制逻辑门限ABS有许多局限性,所以近年来在ABS的基础上发展了车辆动力学控制系统(VDC)。
结合动力学控制的最佳ABS是以滑移率为控制目标的ABS,它是以连续量控制形式,使制动过程中保持最佳的、稳定的滑移率,理论上是一种理想的ABS控制系统滑移率控制的难点在于确定各种路况下的最佳滑移率,另一个难点是车辆速度的测量问题,它应是低成本可靠的技术,并最终能发展成为使用的产品。
对以滑移率为目标的ABS而言,控制精度并不是十分突出的问题,并且达到高精度的控制也比较困难;
因为路面及车辆运动状态的变化很大,多种干扰影响较大,所以重要的问题在于控制的稳定性,即系统鲁棒性,应保持在各种条件下不失控。
防抱系统要求高可靠性,否则会导致人身伤亡及车辆损坏。
因此,发展鲁棒性的ABS控制系统成为关键。
现在,多种鲁棒控制系统应用到ABS的控制逻辑中来。
除传统的逻辑门限方法是以比较为目的外,增益调度PID控制、变结构控制和模糊控制是常用的鲁棒控制系统,是目前所采用的以滑移率为目标的连续控制系统。
模糊控制法是基于经验规则的控制,与系统的模型无关,具有很好的鲁棒性和控制规则的灵活性,但调整控制参数比较困难,无理论而言,基本上是靠试凑的方法。
然而对大多数基于目标值的控制而言,控制规律有一定的规律。
另外,也有采用其它的控制方法,如基于状态空门及线性反馈理论的方法,模糊神经网络控制系统等。
各种控制方法并不是单独应用在汽车上,通常是几种控制方法组合起来实施。
如可以将模糊控制和PID结合起来,兼顾模糊控制的鲁棒性和PID控制的高精度,能达到很好的控制效果。
车轮的驱动打滑与制动抱死是很类似的问题。
在汽车起动或加速时,因驱动力过大而使驱动轮高速旋转、超过摩擦极限而引起打滑。
此时,车轮同样不具有足够的侧向力来保持车辆的稳定,车轮切向力也减少,影响加速性能。
由此看出,防止车轮打滑与抱死都是要控制汽车的滑移率,所以在ABS的基础上发展了驱动防滑系统(ASR)。
ASR是ABS的逻辑和功能扩展。
ABS在增加了ASR功能后,主要的变化是在电子控制单元中增加了驱动防滑逻辑系统,来监测驱动轮的转速。
ASR大多借用ABS的硬件,两者共存一体,发展成为ABS/ASR系统。
目前,ABS/ASR已在欧洲新载货车中普遍使用,并且欧共体法规EEC/71/320已强制性规定在总质量大于3.5t的某些载货车上使用,重型车是首先装用的。
然而ABS/ASR只是解决了紧急制动时附着系数的利用,并可获得较短的制动距离及制动方向稳定性,但是它不能解决制动系统中的所有缺陷。
因此ABS/ASR功能,同时可进行制动强度的控制。
ABS只有在极端情况下(车轮完全抱死)才会控制制动,在部分制动时,电子制动使可控制单个制动缸压力,因此反应时间缩短,确保在任一瞬间得到正确的制动压力。
近几年电子技术及计算机控制技术的飞速发展为EBS的发展带来了机遇。
德国自20世纪80年代以来率先发展了ABS/ASR系统并投入市场,在EBS的研究与发展过程中走到了世界的前列。
德国博世公司在1993年与斯堪尼公司联合首次在Scania牵引车及挂车上装用了EBS。
然而EBS是全新的系统,它有很大的潜力,必将给现在及将来的制动系统带来革命性的变革。
1.3制动系统的发展(线控制动技术)
今天,ABS/ASR已经成为欧美和日本等发达国家汽车的标准设备。
车辆制动控制系统的发展主要是控制技术的发展。
一方面是扩大控制范围、增加控制功能;
另一方面是采用优化控制理论,实施伺服控制和高精度控制。
在第一方面,ABS功能的扩充除ASR外,同时把悬架和转向控制扩展进来,使ABS不仅仅是防抱死系统,而成为更综合的车辆控制系统。
制动器开发厂商还提出了未来将ABS/TCS和VDC与智能化运输系统一体化运用的构想。
随着电子控制传动、悬架系统及转向装置的发展,将产生电子控制系统之间的联系网络,从而产生一些新的功能,如:
采用电子控制的离合器可大大提高汽车静止启动的效率;
在制动过程中,通过输入一个驱动命令给电子悬架系统,能防止车辆的俯仰。
在第二个方面,一些智能控制技术如神经网络控制技术是现在比较新的控制技术,已经有人将其应用在汽车的制动控制系统中。
ABS/ASR并不能解决汽车制动中的所有问题。
因此由ABS/ASR进一步发展演变成电子控制制动系统(EBS),这将是控制系统发展的一个重要的方向。
但是EBS要想在实际中应用开来,并不是一个简单的问题。
除技术外,系统的成本和相关的法规是其投入应用的关键。
线控制动技术已成为国外企业和研究机构的研究热点。
2002年福特汽车公司的FocusFCV制动系统采用了制动踏板与制动系统非机械方式连接的线控制动。
在1999年法兰克福车展上,Bosch公司展出了被认为是电子机械制动系统(EMB)前身的电子液压制动系统(EHB)。
此后,Bosch和Daimler-Chrysler公司开始研究用于商业的EHB系统。
摩托罗拉公司进行了嵌入式软件方面的研究。
目前已有一些厂商将EHB系统应用于汽车的批量生产中,如2004奔驰CLK敞篷版、SL500等。
1.3.1EHB系统简介
EHB系统是电子与液压系统相结合所形成的多用途、多形式制动系统,由电子系统提供柔性控制,液压系统作为备用系统提供动力,以确保当系统的电子部分出现故障时还能保证系统的制动能力。
EHB系统可以看作是EMB系统的一个先期产品,不会得到长期应用,因为它不具备完全电子制动的优点,图1为EHB系统示意图。
在EHB系统中,制动踏板和制动器之间的液压连接是断开的。
带有踏板感觉模拟器和电子传感器的电子踏板模块代替了传统的制动踏板。
驾驶员的意图通过“线”传递到液压单元——整合的电子控制单元(ECU),而车轮制动与传统的制动一样。
EHB系统的电子控制单元接收与制动踏板连接的传感器信号,正常工作情况下备用阀关闭,控制器通过由液压泵驱动的电机进行制动。
当控制器处于故障模式时,备用阀打开,常规液压制动系统起作用,进行制动。
图1-1EHB系统示意
1.3.2EMB系统简介
EMB系统去除了油压系统,由电机产生制动力,其值受电子控制器的控制。
EMB系统的电子控制器根据电子踏板模块传感器的位移和速度信号,并且结合车速等其它传感器信号,向车轮制动模块的电机发出信号,控制其电流和转子转角,进而产生所需的制动力,达到制动的目的。
在EMB系统中,常规制动系统中的液压系统(主缸、真空增压装置、液压管路等)均被图1-2所示的电子机械系统所代替,而液压盘和鼓式制动器的调节器被电机驱动装置所代替。
由于没有备用的机械或液压系统,EMB系统的可靠性变得非常重要,要求系统具有备用的电源(在主电源失效时工作)和冗余的通讯链路(连接制动踏板的三重冗余链路)。
EMB系统原液压系统和EHB系统相比,它的控制器采用了高可靠度的总线协议,控制系统采用冗余设计。
为减小空间,电子元件可以安装在EMB调节器内。
图1-2EMB系统示意
从20世纪90年代开始,一些著名的汽车电子零部件厂商陆续进行了与EMB相关的研究,Bosch、Siemens和ContinentalTeves等3家公司都取得了各自的研究成果,并申请了一系列专利。
ContinentalTeves公司已经有了比较成型的试验品,推出了几代电子机械式制动执行器。
TRW也在进行线控制动控制系统的研究。
目前EMB系统仍在试验阶段,国内在这方面的研究才刚刚起步。
第二章EHB系统结构特点及原理
2.1EHB系统的优点
传统制动系统如图2-1所示,