#第五章 井田开拓中几个主要问题Word格式.docx

上传人:b****2 文档编号:15118216 上传时间:2022-10-27 格式:DOCX 页数:14 大小:174.17KB
下载 相关 举报
#第五章 井田开拓中几个主要问题Word格式.docx_第1页
第1页 / 共14页
#第五章 井田开拓中几个主要问题Word格式.docx_第2页
第2页 / 共14页
#第五章 井田开拓中几个主要问题Word格式.docx_第3页
第3页 / 共14页
#第五章 井田开拓中几个主要问题Word格式.docx_第4页
第4页 / 共14页
#第五章 井田开拓中几个主要问题Word格式.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

#第五章 井田开拓中几个主要问题Word格式.docx

《#第五章 井田开拓中几个主要问题Word格式.docx》由会员分享,可在线阅读,更多相关《#第五章 井田开拓中几个主要问题Word格式.docx(14页珍藏版)》请在冰豆网上搜索。

#第五章 井田开拓中几个主要问题Word格式.docx

2)地面工业场地应尽可能少占或不占良田,特别是不要占用高效农田。

3)井口标高应高于当地历史最高洪水位,并具有良好的泄、排洪条件,免受洪水危胁。

4)井口所在地工程地质条件要好,要避免滑坡、崩坍、地表沉陷的影响。

5)距林区较近时,应给井口留有足够的防火距离,免受森林火灾的影响。

6)要充分考虑各种人为因素。

特别是地方煤矿和乡镇、个体煤矿,要充分注意地面场地、交通等引发的各种矛盾,如井口占地的归属、矸石排放方式等。

二、地下因素

1)井硐穿过的岩层应有良好的地质条件,尽可能避免穿越流沙层、强含水层和地质破坏剧烈带等不利于井硐掘进和维护的地带。

2)井硐落底位置应能保证各水平井底车场巷道和硐室处于坚硬、完整的岩层中,保持井底车场良好的维护条件。

3)井硐应避免老窑采区及其垮落岩层的影响。

4)井硐应尽可能布置在薄煤带或不受采动影响的井田边界之外,以减少工业场地煤柱损失。

5)井硐位置应保证井硐延深时,不受底板强含水层水患威胁。

三、技术经济因素

1)井硐落底位置应尽可能使井下运输、提升等生产环节简单。

2)井硐落底位置应尽可能使开拓工程量小,建井快,出煤早。

3)井硐落底位置应尽可能降低煤炭运输费等运营费用并使矿井生产易于管理。

井硐落底位置在以上原则下,应优先考虑有利于第一开采水平,并兼顾其它水平。

在条件许可时,井筒落底最好靠近第一水平运输大巷。

井硐落底沿井田走向的合理位置,一般在井田储量沿走向分布的中央,这样可以形成比较均衡的双翼井田,煤在井下沿走向的平均运输距离最短、运输工作量最小、运费最省。

矿井两翼开采,其生产、通风均衡,通风费用低。

井硐沿井田倾斜方向的位置应根据井田开采的煤层数目、层间距、煤层厚度、倾角和采用的开拓方式确定。

图5—1表示井筒沿倾斜方向可以有几种方案,井筒位置设于井田中部B处,可使石门较短,沿石门的运输工作量较小。

井筒位置设于A处时总的石门工程量虽然稍大,但第一水平工程量及投资较少,建井期较短。

井筒位置设于C处,初期工程量最大,石门总长度和沿石门的运输工作量也较大,如果煤系基底有含水量大的岩层不允许井筒穿过时,它可以延深井筒到深部,对开采井田深部及向下扩展有利;

而在A,B位置,井筒只能打到一、二水平,深部需用暗井或暗斜井开拓,生产环节多,运输提升较复杂。

从井筒和工业场地保护煤柱损失看,井筒愈靠近浅部,煤柱的尺寸愈小,愈近深部,则煤柱尺寸愈大。

图5—1立井井筒沿井田倾斜方向布置方案

1—井筒;

2—石门;

3—富含水层;

4—井筒及工业场地煤柱

对于急倾斜煤层,特别是厚煤层,井筒位置对石门长度影响较小,而对安全煤柱损失的大小影响突出。

因此,为了减小煤柱损失,井筒位置最好靠近煤层底板或布置在不受采动影响的底板岩石中,如图5—2所示。

斜井沿井田倾斜方向的位置如不受其他条件限制时,为了使井筒易于维护和减少安全煤柱损失,一般应把井布置在下部的薄煤层中或不受采动影响的底板岩石中。

在井田开拓中,除了主井、副井以外,还有风井或小风井。

风井的数目和位置主要取决于井田开拓中的通风系统。

图5—2急斜煤层开拓井筒位置示意图

a一井筒位于煤层顶板;

b一井筒位于煤层底板

1一井筒;

2一主要石门;

3一井筒中心线,4一煤柱边界线

第二节开采水平的确定

井田沿倾斜方向划分为阶段后,就要确定开采水平。

如前所述,一个水平可以为一个阶段服务,也可以为两个阶段服务。

所以,开采水平的数目不仅与阶段数目有关,还与一个水平服务的阶段个数有关。

这就需要先解决能否采用下山开采的问题。

一、采区下山开采

在多水平开拓的井田中,每一个水平可以只开采上山阶段,也可以开采上、下山两个阶段。

决定是否采用下山开采的因素很多,最主要的是矿井基本建设的工程量和基本建设投资的大小以及生产技术条件和因素等。

当阶段高度一定时,采用上、下山开采比只用上山开采水平数目少,井底车场、硐室等工程量及有关设备相应减少,因而基本建设投资也相应降低。

同时,由于水平数目减少,每个水平的服务年限增长,这有利于矿井生产的均衡。

从生产技术上讲,采区上山开采与采区下山开采在运输、排水、通风、掘进等方面都

有各自的特点。

现分述如下:

采区上山开采,煤是向下运输,运输能力大、动力消耗少、运输费用的单价较低;

但是,煤有反向运输(见图5—3),矿井运输提升的总费用比下山开采略大一些。

采区上山开采的排水系统简单,采区内的涌水可以直接由采区上山道自流到阶段平巷。

而采区下山开采的排水就复杂得多。

下山采区排水可以采用各区段逐段排水的方法,也可以采用由采区下部集中一次排水的方法。

和上山开采比较,无论哪一种排水方法都要增加排水设备和排水费用。

在通风方面,上山开采回风平巷位于阶段上部,采区的进风巷与回风巷往往相距较远,不易漏风。

而采用下山开采时,进风巷与回风巷相距较近,因而漏风的可能性大,使采区的通风效率降低,且采区内通风构筑物增多,通风管理较困难,这对高瓦斯矿井则更为不利。

采区下山开采的掘进工作除掘进时的通风比采区上山容易以外,其装载、运输、排水等环节都比采区上山掘进困难,尤其是当煤层的倾角大和煤层涌水量大时,采区下山的掘进工作就更加困难。

图5—3上、下山开采比较

I、II、III一开采水平序号

综上所述,一般缓倾斜煤层,只有当煤层倾角较小(<

16°

),瓦斯含量较低,涌水量不大时,适于既采用上山开采,又采用下山开采,即一个开采水平为上、下山两个阶段服务。

二、开采水平的确定

根据井田内划分阶段的多少,可以设一个或几个开采水平。

这主要取决于井田的斜长和阶段尺寸的大小以及是否采用下山开采。

开采水平的尺寸用水平垂高表示。

水平垂高指的是该水平开采范围煤层的垂直高度。

如果一个水平只采一个阶段,则水平高度就等于阶段高度,如果一个水平既开采上山阶段又开采下山阶段,这时水平高度就是两个阶段垂高之和。

合理的水平高度应使矿井的吨煤基本建设投资和分摊到每吨煤上的生产费用达到最少。

增大开采水平的垂高,减少开采水平的数目,矿井的吨煤基本建设费用就可能减少,但却会增加阶段的斜长或增加采区下山开采,使矿井的生产经营费用增加。

由此可见,随着开采水乎高度的变化,矿井的基本建设费用与生产经营费用都在向相反方向增减,因而对每个井田都存在着一个经济上合理的水平高度。

随着开采水平高度增大而减少的费用有:

井底车场及有关硐室、开采水平内的石门及阶段平巷等的基本建设费用,以及设备和安装等费用。

随着阶段高度增大而增高的费用有:

上山部分煤的运输费用、通风费用以及巷道维护费用等。

就目前的开采技术条件,缓倾斜煤层阶段高度增加对采区通风、排水、煤的运输等项费用的影响并不很大,而限制阶段垂高的重要因素是上山部分采区的斜长。

因为采区的辅助运输是依靠轨道上山的绞车,如果采区上山过长,可能需要安装多台绞车进行多段提升,将导致井下运输环节增加,降低生产效率。

对于急倾斜煤层来讲,阶段垂高过大时,溜煤眼的掘进和维护都比较困难。

反之,如果阶段垂高过小,则会造成采区服务年限缩短,可能使采区准备及开采水平等延深工作过分紧张,影响矿井正常生产,另一方面,阶段高度过小还会增加巷道的煤柱损失。

除上述因素外,煤层赋存状态以及煤层埋藏的地质条件等,对阶段和开采水平高度的确定也有一定影响。

例如,煤层厚度影响开采水平的煤炭储量,即影响着开采水平的服务年限;

近水平煤层层间距大小还可能决定开采水平的高度,如图5—4所示。

图5—4近水平煤层按煤组划分水平

1--第一水平;

2—第二水平;

3—溜井

总之,水平标高和垂高的确定,要充分考虑各种影响因素并根据国家有关技术政策和规定来综合分析。

第三节阶段大巷布置

阶段大巷包括阶段运输大巷和回风大巷。

它们横贯井田走向,服务年限长,工程量大,是影响矿井基建投资、建井速度和生产经营效果的重要开拓工程。

研究阶段大巷的布置有很重要的意义。

一、阶段运输大巷的运输方式

目前,我国阶段大巷的运输方式主要有轨道运输和胶带输送机运输两种。

轨道运输时,大巷断面由电机车和矿车尺寸决定。

它对巷道坡度要求较高,不允许有大的起伏,但对巷道平面弯度限制不大,只要弯道曲率半径能满足电机车和运行要求即可。

胶带运输时,巷道断面一般比轨道运输要小。

但为了机器检修,必须另开一条轨道巷与其并行。

有时可将轨道与输送机布置在一条巷道内(称为机轨合一),但巷道断面要增加。

就目前技术条件,胶带运输一般用于井田走向长度短,煤层开发强度大的大型矿井。

否则,采用轨道运输更为合理和经济。

二、运输大巷的布置方式

根据运输大巷所服务的煤层数,它的布置形式有分层运输大巷、集中运输大巷和分组集中运输大巷三种。

在开采水平各煤层中分别开掘运输大巷,并用阶段石门或溜井与井底车场相通的叫分层运输大巷,如图5—5所示。

图5—5分层运输大巷布置方式示意图

1—主井;

2—副井;

3—主要石门;

4—分层运输大巷;

5—分层回风巷;

6—回风石门;

7—回风井;

8—含水岩层

分层运输大巷可以沿煤层掘进,也可以在煤层底板中开掘。

在煤层中开掘施工容易。

掘进

速度快,成巷费用低,并有助于进一步探明煤层赋存状况,补充地质资料,这对勘探程度较差,地质构造复杂的矿井有重要意义。

分煤层开掘大巷,巷道掘进工程量大,采区生产能力低,生产分散,管理十分不便,不利于矿井生产能力和劳动生产率的进一步提高。

同时,煤层大巷易受采动影响,巷道维护困难,维护费用高,煤柱损失大,不利于安全生产。

因此,分层运输大巷布置目前只在少数矿井或地方小型矿井中得到应用。

在开采水平内只开一条运输大巷为各煤层服务,这条运输大巷叫做集中运输大巷,它通过采区石门与各煤层相联系(见图5—6)。

集中运输大巷的特点是:

减少了大巷的掘进量和维护量,增加了联系各煤层的采区石门,有利于采区巷道联合布置,实现合理集中生产。

当采用岩石集中大巷时,大巷的弯道可以减少,生产期间维护条件好,可以充分发挥机车的运输能力,有利于运输工作机械化和自动化。

同时,可以不留大巷煤柱,有利于提高煤炭回收率。

但是,这种布置方式。

建井初期需要在掘进阶段石门、运输大巷和采区石门以后才能进行上部煤层的准备与回采,因而建井期较长。

另一方面,当煤层间距很大时,采区石门的长度大,采区石门的总工程量可能很大,以致造成技术上经济上不合理。

因此,这种方式适用于煤层数目较多,煤层间距不大的矿井。

分组集中大巷是前述两种方法的过渡形式,它兼有前两种方式的部分特点。

当井田内各煤层的层间有大有小用一条集中运输大巷服务于全部煤层在技术经济上都不合理时,可以各煤层的间距及煤层特点将煤层分为若干煤组,每一煤组布置一条运输大巷担负本煤组的运输任务,称为分组集中大巷。

分组大巷以采区石门联系本煤组各煤层,如图5—7所

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 建筑土木

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1