新课标高一数学人教版必修1教案全集Word文件下载.doc

上传人:b****3 文档编号:15031906 上传时间:2022-10-27 格式:DOC 页数:75 大小:2.37MB
下载 相关 举报
新课标高一数学人教版必修1教案全集Word文件下载.doc_第1页
第1页 / 共75页
新课标高一数学人教版必修1教案全集Word文件下载.doc_第2页
第2页 / 共75页
新课标高一数学人教版必修1教案全集Word文件下载.doc_第3页
第3页 / 共75页
新课标高一数学人教版必修1教案全集Word文件下载.doc_第4页
第4页 / 共75页
新课标高一数学人教版必修1教案全集Word文件下载.doc_第5页
第5页 / 共75页
点击查看更多>>
下载资源
资源描述

新课标高一数学人教版必修1教案全集Word文件下载.doc

《新课标高一数学人教版必修1教案全集Word文件下载.doc》由会员分享,可在线阅读,更多相关《新课标高一数学人教版必修1教案全集Word文件下载.doc(75页珍藏版)》请在冰豆网上搜索。

新课标高一数学人教版必修1教案全集Word文件下载.doc

试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容

二、新课教学

(一)集合的有关概念

1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:

课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征

(1)确定性:

设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:

一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:

构成两个集合的元素完全一样

5.元素与集合的关系;

(1)如果a是集合A的元素,就说a属于(belongto)A,记作a∈A

(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作aA(或aA)(举例)

6.常用数集及其记法

非负整数集(或自然数集),记作N

正整数集,记作N*或N+;

整数集,记作Z

有理数集,记作Q

实数集,记作R

(二)集合的表示方法

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:

把集合中的元素一一列举出来,写在大括号内。

如:

{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

例1.(课本例1)

思考2,引入描述法

说明:

集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:

把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:

在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

{x|x-3>

2},{(x,y)|y=x2+1},{直角三角形},…;

例2.(课本例2)

(课本P5最后一段)

思考3:

(课本P6思考)

强调:

描述法表示集合应注意集合的代表元素

{(x,y)|y=x2+3x+2}与{y|y=x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:

{整数},即代表整数集Z。

辨析:

这里的{}已包含“所有”的意思,所以不必写{全体整数}。

下列写法{实数集},{R}也是错误的。

列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(三)课堂练习(课本P6练习)

三、归纳小结

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

四、作业布置

书面作业:

习题1.1,第1-4题

五、板书设计(略)

课题:

1.2集合间的基本关系

类比实数的大小关系引入集合的包含与相等关系

了解空集的含义

教学目的:

(1)了解集合之间的包含、相等关系的含义;

(2)理解子集、真子集的概念;

(3)能利用Venn图表达集合间的关系;

(4)了解与空集的含义。

子集与空集的概念;

用Venn图表达集合间的关系。

弄清元素与子集、属于与包含之间的区别;

六、引入课题

1、复习元素与集合的关系——属于与不属于的关系,填以下空白:

(1)0N;

(2)Q;

(3)-1.5R

2、类比实数的大小关系,如5<

7,2≤2,试想集合间是否有类似的“大小”关系呢?

(宣布课题)

七、新课教学

(一)集合与集合之间的“包含”关系;

A={1,2,3},B={1,2,3,4}

集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;

如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。

记作:

读作:

A包含于(iscontainedin)B,或B包含(contains)A

当集合A不包含于集合B时,记作AB

用Venn图表示两个集合间的“包含”关系

B

A

(二)集合与集合之间的“相等”关系;

,则中的元素是一样的,因此

练习

结论:

任何一个集合是它本身的子集

(三)真子集的概念

若集合,存在元素,则称集合A是集合B的真子集(propersubset)。

AB(或BA)

A真包含于B(或B真包含A)

举例(由学生举例,共同辨析)

(四)空集的概念

(实例引入空集概念)

不含有任何元素的集合称为空集(emptyset),记作:

规定:

空集是任何集合的子集,是任何非空集合的真子集。

(五)结论:

,且,则

(六)例题

(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。

(2)化简集合A={x|x-3>

2},B={x|x5},并表示A、B的关系;

(七)课堂练习

(八)归纳小结,强化思想

两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;

(九)作业布置

1、书面作业:

习题1.1第5题

2、提高作业:

已知集合,≥,且满足,求实数的取值范围。

设集合,

,试用Venn图表示它们之间的关系。

板书设计(略)

1.3集合的基本运算

(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;

(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

集合的交集与并集、补集的概念;

集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;

八、引入课题

我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?

思考(P9思考题),引入并集概念。

九、新课教学

1.并集

一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)

A∪B 读作:

“A并B”

即:

A∪B={x|x∈A,或x∈B}

Venn图表示:

A∪B

A

?

两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

例题(P9-10例4、例5)

连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。

问题:

在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。

2.交集

一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

A∩B 读作:

“A交B”

即:

A∩B={x|∈A,且x∈B}

交集的Venn图表示

两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

例题(P9-10例6、例7)

拓展:

求下列各图中集合A与B的并集与交集

AB

A(B)

B

BA

当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集

3.补集

全集:

一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。

补集:

对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementaryset),简称为集合A的补集,

CUA

CUA={x|x∈U且x∈A}

补集的Venn图表示

补集的概念必须要有全集的限制

例题(P12例8、例9)

4.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

5.集合基本运算的一些结论:

A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A

AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A

(CUA)∪A=U,(CUA)∩A=

若A∩B=A,则AB,反之也成立

若A∪B=B,则AB,反之也成立

若x∈(A∩B),则x∈A且x∈B

若x∈(A∪B),则x∈A,或x∈B

6.课堂练习

(1)设A={奇数}、B={偶数},则A∩Z=A,B∩Z=B,A∩B=

(2)设A={奇数}、B={偶数},则A∪Z=Z,B∪Z=Z,A∪B=Z

十、归纳小结(略)

十一、作业布置

3、书面作业:

P13习题1.1,第6-12题

4、提高内容:

(1)已知X={x|x2+px+q=0,p2-4q>

0},A={1,3,5,7,9},B={1,4,7,10},且

,试求p、q;

(2)集合A={x|x2+px-2=0},B={x|x2-x+q=0},若AB={-2,0,1},求p、q;

(3)A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB={3,7},求B

1.2.1函数的概念

函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示某些函数的定义域;

理解函数的模型化思想,用合与对应的语言来刻画函数;

符号“y=f(x)”的含义,函数定义域和值域

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1