初中数学几何知识点总结北师大版Word文档格式.docx

上传人:b****1 文档编号:14999753 上传时间:2022-10-26 格式:DOCX 页数:21 大小:97.52KB
下载 相关 举报
初中数学几何知识点总结北师大版Word文档格式.docx_第1页
第1页 / 共21页
初中数学几何知识点总结北师大版Word文档格式.docx_第2页
第2页 / 共21页
初中数学几何知识点总结北师大版Word文档格式.docx_第3页
第3页 / 共21页
初中数学几何知识点总结北师大版Word文档格式.docx_第4页
第4页 / 共21页
初中数学几何知识点总结北师大版Word文档格式.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

初中数学几何知识点总结北师大版Word文档格式.docx

《初中数学几何知识点总结北师大版Word文档格式.docx》由会员分享,可在线阅读,更多相关《初中数学几何知识点总结北师大版Word文档格式.docx(21页珍藏版)》请在冰豆网上搜索。

初中数学几何知识点总结北师大版Word文档格式.docx

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性:

三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示

三角形有下面三个特性:

(1)三角形有三条线段

(2)三条线段不在同一直线上三角形是封闭图形

(3)首尾顺次相接

三角形用符号“”表示,顶点是A、B、C的三角形记作“ABC”,读作“三角形ABC”。

5、三角形的分类

三角形按边的关系分类如下:

不等边三角形

三角形底和腰不相等的等腰三角形

等腰三角形

等边三角形

三角形按角的关系分类如下:

直角三角形(有一个角为直角的三角形)

三角形锐角三角形(三个角都是锐角的三角形)

斜三角形

钝角三角形(有一个角为钝角的三角形)

把边和角联系在一起,我们又有一种特殊的三角形:

等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论

(1)三角形三边关系定理:

三角形的两边之和大于第三边。

推论:

三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:

①判断三条已知线段能否组成三角形。

②当已知两边时,可确定第三边的围。

③证明线段不等关系。

7、三角形的角和定理及推论

三角形的角和定理:

三角形三个角和等于180°

①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个角的和。

③三角形的一个外角大于任何一个和它不相邻的角。

注:

在同一个三角形中:

等角对等边;

等边对等角;

大角对大边;

大边对大角。

8、三角形的面积:

三角形的面积=×

底×

考点二、全等三角形

1、全等三角形的概念

能够完全重合的两个图形叫做全等形。

能够完全重合的两个三角形叫做全等三角形。

两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。

2、全等三角形的表示和性质

全等用符号“≌”表示,读作“全等于”。

如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3、三角形全等的判定

三角形全等的判定定理:

(1)边角边定理:

有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)

(2)角边角定理:

有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)

(3)边边边定理:

有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):

有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

4、全等变换

只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。

全等变换包括一下三种:

(1)平移变换:

把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:

将图形沿某直线翻折180°

,这种变换叫做对称变换。

(3)旋转变换:

将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

考点三、等腰三角形

1、等腰三角形的性质

(1)等腰三角形的性质定理及推论:

定理:

等腰三角形的两个底角相等(简称:

等边对等角)

推论1:

等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:

等边三角形的各个角都相等,并且每个角都等于60°

(2)等腰三角形的其他性质:

①等腰直角三角形的两个底角相等且等于45°

②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:

设腰长为a,底边长为b,则<

a

④等腰三角形的三角关系:

设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°

—2∠B,∠B=∠C=

2、等腰三角形的判定

等腰三角形的判定定理及推论:

如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:

等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

三个角都相等的三角形是等边三角形

有一个角是60°

的等腰三角形是等边三角形。

推论3:

在直角三角形中,如果一个锐角等于30°

,那么它所对的直角边等于斜边的一半。

等腰三角形的性质与判定

等腰三角形性质

等腰三角形判定

中线

1、等腰三角形底边上的中线垂直底边,平分顶角;

2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的三角形是等腰三角形;

2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形

角平分线

1、等腰三角形顶角平分线垂直平分底边;

2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

高线

1、等腰三角形底边上的高平分顶角、平分底边;

2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

2、有两条高相等的三角形是等腰三角形。

等边对等角

等角对等边

底的一半<

腰长<

周长的一半

两边相等的三角形是等腰三角形

4、三角形中的中位线

连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:

三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:

位置关系:

可以证明两条直线平行。

数量关系:

可以证明线段的倍分关系。

常用结论:

任一个三角形都有三条中位线,由此有:

结论1:

三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:

三条中位线将原三角形分割成四个全等的三角形。

结论3:

三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:

三角形一条中线和与它相交的中位线互相平分。

结论5:

三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

第十章四边形

考点一、四边形的相关概念

1、四边形:

在同一平面,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。

2、凸四边形:

把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。

3、对角线:

在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。

4、四边形的不稳定性:

三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。

但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。

5、四边形的角和定理及外角和定理

四边形的角和定理:

四边形的角和等于360°

四边形的外角和定理:

四边形的外角和等于360°

多边形的角和定理:

n边形的角和180°

多边形的外角和定理:

任意多边形的外角和360°

6、多边形的对角线条数的计算公式:

设多边形的边数为n,则多边形的对角线条数为。

考点二、平行四边形

1、平行四边形的概念:

两组对边分别平行的四边形叫做平行四边形。

平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。

2、平行四边形的性质

(1)平行四边形的邻角互补,对角相等。

(2)平行四边形的对边平行且相等。

推论:

夹在两条平行线间的平行线段相等。

(3)平行四边形的对角线互相平分。

(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。

3、平行四边形的判定

(1)定义:

两组对边分别平行的四边形是平行四边形

(2)定理1:

两组对角分别相等的四边形是平行四边形;

定理2:

两组对边分别相等的四边形是平行四边形;

定理3:

对角线互相平分的四边形是平行四边形;

定理4:

一组对边平行且相等的四边形是平行四边形

4、两条平行线的距离:

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

平行线间的距离处处相等。

5、平行四边形的面积:

S平行四边形=底边长×

高=ah

考点三、矩形

1、矩形的概念

有一个角是直角的平行四边形叫做矩形。

2、矩形的性质

(1)具平行四边形的一切性质;

(2)矩形的四个角都是直角;

(3)矩形的对角线相等;

(4)矩形是轴对称图形

3、矩形的判定

有一个角是直角的平行四边形是矩形

有三个角是直角的四边形是矩形;

对角线相等的平行四边形是矩形

4、矩形的面积:

S矩形=长×

宽=ab

考点四、菱形

1、菱形的概念

有一组邻边相等的平行四边形叫做菱形

2、菱形的性质

(1)具有平行四边形的一切性质;

(2)菱形的四条边相等;

(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角;

(4)菱形是轴对称图形

3、菱形的判定

有一组邻边相等的平行四边形是菱形

四边都相等的四边形是菱形;

对角线互相垂直的平行四边形是菱形

4、菱形的面积:

S菱形=底边长×

高=两条对角线乘积的一半

考点五、正方形

1、正方形的概念:

有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质

(1)具有平行四边形、矩形、菱形的一切性质

(2)正方形的四个角都是直角,四条边都相等

(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角

(4)正方形是轴对称图形,有4条对称轴

(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形

(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3、正方形的判定

(1)判定一个四边形是正方形的主要依据是定义,途径有两种:

①先证它是矩形,再证有一组邻边相等。

②先证它是菱形,再证有一个角是直角。

(2)判定一个四边形为正方形的一般顺序如下:

先证明它是平行四边形;

再证明它是菱形(或矩形);

最后证明它是矩形(或菱形)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 其它语言学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1