人版教育部审定版六年级下册数学教案Word文档下载推荐.docx

上传人:b****3 文档编号:14931633 上传时间:2022-10-26 格式:DOCX 页数:57 大小:76.19KB
下载 相关 举报
人版教育部审定版六年级下册数学教案Word文档下载推荐.docx_第1页
第1页 / 共57页
人版教育部审定版六年级下册数学教案Word文档下载推荐.docx_第2页
第2页 / 共57页
人版教育部审定版六年级下册数学教案Word文档下载推荐.docx_第3页
第3页 / 共57页
人版教育部审定版六年级下册数学教案Word文档下载推荐.docx_第4页
第4页 / 共57页
人版教育部审定版六年级下册数学教案Word文档下载推荐.docx_第5页
第5页 / 共57页
点击查看更多>>
下载资源
资源描述

人版教育部审定版六年级下册数学教案Word文档下载推荐.docx

《人版教育部审定版六年级下册数学教案Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《人版教育部审定版六年级下册数学教案Word文档下载推荐.docx(57页珍藏版)》请在冰豆网上搜索。

人版教育部审定版六年级下册数学教案Word文档下载推荐.docx

如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

(3)我们来看一下课本上的图,你知道的气温吗?

最高气温和最低气温都是多少呢?

随机点同学回答。

〔4〕刚刚同学回答得很对,读法也很正确。

(5)了解了的气温,下面我想请同学告诉我的气温,它与XX气温比较又怎样呢?

用手势告诉大家好吗?

学生讨论合作,交流反馈。

(6)请同学们把图上其它各地的温度都写出来,并读一读。

(7)教师展示学生不同的表示方法。

(8)小结:

通过刚才的学习,我们用"

和"

就能准确地表示零上温度和零下温度。

[课堂作业]完成教材第4页的"

做一做"

第1题。

组织学生独立完成,指名回答。

[课堂小结]通过这节课的学习,你有什么收获?

[课后作业]完成练习册中本课时的练习。

第2课时负数的初步认识〔2〕

[教学容]负数的初步认识〔2〕〔教材第3页例2〕。

[教学目标]通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。

[重点难点]体会引入负数的必要性,初步理解负数的含义。

[情景导入]教师:

上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的?

组织学生讨论回忆上一课容。

师:

很好,大家都很棒。

今天我们继续学习负数知识。

引出课题并板书:

负数的初步认识〔2〕

[新课讲授]1.教学例2。

〔1〕教师出示存折明细示意图。

〔教材第3页的主题图〕教师:

同学们能说说"

支出〔-〕或〔+〕"

这一栏的数各表示什么意义吗?

组织学生分组讨论、交流,然后指名汇报。

(2)引导学生归纳总结:

像2000,500这样的数表示的是存入的钱数;

而前面有"

号的数,像-500,-132这样的数表示的是支出的钱数。

〔3〕教师:

上述数据中500和-500意义相同吗?

〔500和-500意义相反,一个是存入,一个是支出〕。

你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?

说说你是怎么表示的?

师把学生的表示结果一一板书在黑板上。

2.归纳正数和负数。

(1)你能把黑板上板书的这些数进行分类吗?

小组讨论交流。

(2)教师展示分类的结果,适时讲解。

像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。

像-8,-4,-500,-20这样的数,我们把它叫做负数。

(3)那么0应该归为哪一类呢?

组织学生讨论,相互发表意见。

师设难:

"

我认为0应该归为正数一类。

归纳:

0既不是正数也不是负数,它是正数和负数的分界点。

〔4〕你在什么地方见过负数?

教师鼓励学生注意联系实际举出更多的例子。

[课堂作业]完成教材第4页的"

第2题。

组织学生动手填一填,在小组中交流检查。

[课堂小结]通过这节课的学习,你有什么收获?

第3课时在数轴上表示正数、0和负数

[教学容]借助数轴理解正数和负数的意义〔教材第5页例3〕。

[教学目标]

1.借助数轴初步理解正数、0、负数。

2.初步体会数轴上数的顺序,完成对数的结构的初步构建以与正数与负数的比较。

[重点难点]认识数轴、0。

[情景导入]课件演示教材第5页的主题图。

教师:

如何在一条直线上表示出他们运动后的情况呢?

[新课讲授]教学例3。

(1)教师:

怎样用数来表示这些学生和大树的相对位置关系呢?

组织学生在小组中议一议,然后汇报。

〔2〕教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。

(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

〔4〕教师总结:

我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。

〔5〕引导学生观察数轴①从0起往右依次是?

从0起往左依次是?

你发现什么规律?

②在数轴上分别找到1.5和-1.5对应的点。

如果从起点分别到1.5和-1.5处,应如何运动?

[课堂作业]1.完成教材第5页的"

学生独立练习,指名汇报。

2.完成教材第6页练习一的第4题。

第4题组织学生独立完成,并在小组中相互交流、检查。

教师用课件出示答案、订正。

百分数〔二〕

第1课时折扣

[教学容]折扣〔教材第8页的容,练习二第1~3题〕。

[教学目标]

1.明确折扣的含义。

2.能熟练地把折扣写成分数、百分数。

3.正确解答有关折扣的实际问题。

4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

[重点难点]

1.会解答有关折扣的实际问题。

2.合理、灵活地选择方法,解答有关折扣的实际问题。

[情景导入]圣诞节期间各商家搞了哪些促销活动?

谁来说说他们是怎样进行促销的?

〔学生汇报调查情况。

[新课讲授]

1.教学折扣的含义,会把折扣改写成百分数。

(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?

比如说打"

七折"

你怎么理解?

(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。

〔电脑显示〕①大衣,原价:

1000元,现价:

700元。

②围巾,原价:

100元,现价:

70元。

③铅笔盒,原价:

10元,现价:

④橡皮,原价:

1元,现价:

〔3〕动脑筋想一想:

如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?

如果原价是1元的橡皮,打七折,现价又是多少?

(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?

带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。

(5)讨论,找规律。

A.学生动手操作、计算,并在计算或讨论中发现规律。

B.学生汇报寻找的方法:

利用计算器,原价乘以70%恰好是标签的售价或现价除以原价大约都是70%;

或查书等等。

(6)归纳,得定义。

A.通过小组讨论,谁能说说打七折是什么意思?

打八折是什么意思?

打八五折呢?

B.概括地讲,打折是什么意思?

如果用分母是十的分数,该怎样表示?

〔"

几折"

就是十分之几,也就是百分之几十〕

C.通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称"

打折"

几折就是十分之几,也就是百分之几十。

如八五折就是85%,九折就是90%。

一般情况下,不把折扣写成十分之几这样的分数形式,写成分数时,有时会出现小8.5数〔例如八五折就会写成〕,不便于计算和理解。

(7)练习。

①四折是十分之〔〕,改写成百分数是〔〕。

②六折是十分之〔〕,改写成百分数是〔〕。

③七五折是十分之〔〕,改写成百分数是〔〕。

④九二折是十分之〔〕,改写成百分数是〔〕。

2.运用折扣含义解决实际问题。

出示问题〔1〕:

爸爸给小雨买了一辆自行车,原价元,现在商店打八五折出售。

买这辆车用了多少钱?

=①导学生分析题意:

打八五折怎么理解?

是以谁为单位"

1"

②找出数量关系式。

先让学生找出单位"

然后再找出数量关系式:

原价×

85%=实际售价

③学生独立根据数量关系式,列式解答。

④全班交流。

根据学生的汇报,板书:

180×

85%=153〔元〕答:

买这辆车用了153元。

出示问题

(2):

爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

①导学生理解题意:

只花了九折的钱怎么理解?

以谁为单位"

②学生试算,独立列式。

③全班交流。

第一种算法:

原价160元,减去现价,就是比原价便宜多少钱。

160-160×

90%=160-144=16〔元〕第二种算法:

原价160元,现价比原价便宜了〔1-90%〕。

160×

<

1-90%>

=160×

10%=16〔元〕重点引导学生理解第二种算法,知道现价比原价便宜了10%。

3.典例讲析。

例在某商店促销活动时,原价800元的某品牌自行车九折出售,最后剩下的几辆车,商家再次打八折出售,最后的几辆车售价多少元?

分析:

原价800元,第一次打九折出售,价格是原价的90%,再次打八折出售,价格是第一次打九折后的80%。

可以先求出第一次打折后的价格,再求出第二次打折后的价格,即为现在的售价。

解:

800×

90%×

80%=720×

80%=576〔元〕答:

最后的几辆车售价是576元。

[课堂作业]

1.〔1〕爸爸买了一个剃须刀,原价240元,现在只花了八折的钱,比原价便宜了多少钱?

A.打八折怎么理解?

B.学生试做,讲评。

(2)判断:

①商品打折扣都是以原商品价格为单位"

即标准量。

〔〕②一件上衣现在打八折出售,就是说比原价降低10%。

〔〕

2.完成教材第8页"

练习题。

3.完成教材第13页练习二第1~3题。

[课堂小结]通过这节课的学习你有什么收获?

总结:

解决与折扣有关的实际问题实质上是求一个数的百分之几是多少和已知一个数的百分之几是多少求这个数的问题。

在分析折扣时,不要把打折后的价格当作定价,正确区分定价、进价和售价是解决折扣问题的关键。

4第2课时成数

[教学容]成数〔教材第9页容〕。

[教学目标]1.明确成数的含义。

2.能熟练的把成数写成分数、百分数。

3.正确解答有关成数的实际问题。

[重点难点]1.成数的理解。

2.成数的计算。

[情景导入]农业收成,经常用"

成数"

来表示。

例如,报纸上写道:

今年我省油菜籽比去年增产二成"

?

同学们有留意到类似的新闻报道吗?

〔学生汇报相关报导〕

[新课讲授]1.介绍成数的含义,会把成数改写成分数,百分数〔成数:

表示一个数是另一个数的十分之几,通称"

几成"

〔1〕刚才大家都说了很多有成数的发展变化情况,那么这些"

是什么意思呢?

比如说,增产"

二成"

你怎么理解?

〔学生讨论并回答〕教师板书:

成数分数百分数二成十分之二20%

(2)试说说以下成数表示什么?

①出口汽车总量比去年增加三成。

这里的"

三成"

表示什么?

②出游人数比去年增加两成。

这里的两成表示什么?

引导

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 育儿理论经验

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1