高考复习排列组合与二项式定理Word下载.doc

上传人:b****3 文档编号:14790754 上传时间:2022-10-24 格式:DOC 页数:14 大小:144KB
下载 相关 举报
高考复习排列组合与二项式定理Word下载.doc_第1页
第1页 / 共14页
高考复习排列组合与二项式定理Word下载.doc_第2页
第2页 / 共14页
高考复习排列组合与二项式定理Word下载.doc_第3页
第3页 / 共14页
高考复习排列组合与二项式定理Word下载.doc_第4页
第4页 / 共14页
高考复习排列组合与二项式定理Word下载.doc_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

高考复习排列组合与二项式定理Word下载.doc

《高考复习排列组合与二项式定理Word下载.doc》由会员分享,可在线阅读,更多相关《高考复习排列组合与二项式定理Word下载.doc(14页珍藏版)》请在冰豆网上搜索。

高考复习排列组合与二项式定理Word下载.doc

11.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有  种.(以数字作答)

12.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=  .

13.由1,2,3,4,5,6组成没有重复数字的六位数,要求奇数不相邻,且4不在第四位,则这样的六位数共有  个.

14.7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有  种(用数字作答).

15.的展开式中的常数项为  .

16.在二项式的展开式中,常数项等于  .

17.设常数a∈R,若(x2+)5的二项展开式中x7项的系数为﹣10,则a=  .

18.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为  .

19.如图,一环形花坛分成A,B,C,D,E共5块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的两块种不同的花,则不同的种法总数为  .(用数字作答)

20.若的展开式中各项系数之和为64,则展开式的常数项为  .

21.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有  种(用数字作答).

22.若(1+mx)6=a0+a1x+a2x2+…+a6x6,且a1+a2+…+a6=63,则实数m的值为  .

23.二项式的展开式中,只有第6项的系数最大,则该展开式中的常数项为  .

24.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有  种.

 

2017年03月25日茅盾中学09的高中数学组卷5

参考答案与试题解析

一.填空题(共24小题)

1.(2014•浙江)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).

【分析】分类讨论,一、二、三等奖,三个人获得;

一、二、三等奖,有1人获得2张,1人获得1张.

【解答】解:

分类讨论,一、二、三等奖,三个人获得,共有=24种;

一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,

共有24+36=60种.

故答案为:

60.

【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.

2.(2010•大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 30 种.(用数字作答)

【分析】由题意分类:

(1)A类选修课选1门,B类选修课选2门,确定选法;

(2)A类选修课选2门,B类选修课选1门,确定选法;

然后求和即可.

分以下2种情况:

(1)A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;

(2)A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.

所以不同的选法共有C31C42+C32C41=18+12=30种.

30

【点评】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.

3.(2015•山东一模)把座位编号为1、2、3、4、5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为 96 .(用数字作答)

【分析】根据题意,先将票分为符合题意要求的4份,可以转化为将1、2、3、4、5这五个数用3个板子隔开,分为四部分且不存在三连号的问题,用插空法易得其情况数目,再将分好的4份对应到4个人,由排列知识可得其情况数目,由分步计数原理,计算可得答案.

先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人一张,1人2张,且分得的票必须是连号,相当于将1、2、3、4、5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C43=4种情况,再对应到4个人,有A44=24种情况,则共有4×

24=96种情况.

故答案为96.

【点评】本题考查排列、组合的应用,注意将分票的问题转化为将1、2、3、4、5这五个数用3个板子隔开,分为四部分的问题,用插空法进行解决.

4.(2013•浙江)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有 480 种(用数字作答)

【分析】按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.

按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,

因为左右是对称的,所以只看左的情况最后乘以2即可.

当C在左边第1个位置时,有A,

当C在左边第2个位置时,A和B有C右边的4个位置可以选,有AA,

当C在左边第3个位置时,有AA+AA,

共为240种,乘以2,得480.则不同的排法共有480种.

480.

【点评】本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要掌握分类讨论的处理方法.

5.(2016•黄冈模拟)在某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为 60 .

【分析】若第一个出场的是男生,方法有=36种.若第一个出场的是女生(不是女生甲),用插空法求得方法有=24种,把这两种情况的方法数相加,即得所求.

①若第一个出场的是男生,则第二个出场的是女生,以后的顺序任意排,方法有=36种.

②若第一个出场的是女生(不是女生甲),则将剩余的2个女生排列好,2个男生插空,方法有=24种.

故所有的出场顺序的排法种数为36+24=60,

【点评】本题主要考查排列组合、两个基本原理的应用,注意特殊位置优先排,不相邻问题用插空法,体现了分类讨论的数学思想,属于中档题.

6.(2013•北京)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 96 .

【分析】求出5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号的组数,然后分给4人排列即可.

5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:

1和2,2和3,3和4,4和5,四种连号,其它号码各为一组,分给4人,共有4×

=96种.

96.

【点评】本题考查排列组合以及简单的计数原理的应用,正确分组是解题的关键,考查分析问题解决问题的能力.

7.(2015•哈尔滨校级模拟)展开式中只有第六项的二项式系数最大,则展开式中的常数项等于 180 .

【分析】如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间那项的二次项系数最大,由此可确定n的值,进而利用展开式,即可求得常数项.

如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间项的二次项系数最大.

∵展开式中只有第六项的二项式系数最大,

∴n=10

∴展开式的通项为=

令=0,可得r=2

∴展开式中的常数项等于=180

180

【点评】本题考查二项展开式,考查二项式系数,正确利用二项展开式是关键.

8.(2016•惠州三模)在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,则展开式中含x2项的系数是 ﹣56 .

【分析】先求出n,在展开式的通项公式,令x的指数为2,即可得出结论.

∵在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,

∴n=8,

展开式的通项公式为Tr+1=•(﹣1)r•x8﹣2r,

令8﹣2r=2,则r=3,∴展开式中含x2项的系数是﹣=﹣56.

﹣56.

【点评】本题考查二项展开式的通项公式解决二项展开式的特定项问题,属于基础题.

9.(2009•浙江)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是 336 .

【分析】由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.

由题意知本题需要分组解决,

∵对于7个台阶上每一个只站一人有A73种;

若有一个台阶有2人另一个是1人共有C31A72种,

∴根据分类计数原理知共有不同的站法种数是A73+C31A72=336种.

336.

【点评】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整﹣﹣完成了所有步骤,恰好完成任务.

10.(2011•北京)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有 14 个.(用数字作答)

【分析】本题是一个分类计数问题,首先确定数字中2和3的个数,当数字中有1个2,3个3时,当数字中有2个2,2个3时,当数字中有3个2,1个3时,写出每种情况的结果数,最后相加.

由题意知本题是一个分类计数问题,

首先确定数字中2和3的个数,

当数字中有1个2,3个3时,共有C41=4种结果,

当数字中有2个2,2个3时,共有C42=6种结果,

当数字中有3个2,1个3时,共有有C41=4种结果,

根据分类加法原理知共有4+6+4=14种结果,

14

【点评】本题考查分类计数原理,是一个数字问题,这种问题一般容易出错,注意分类时要做到不重不漏,本题是一个基础题,也是一个易错题,易错点在数字中重复出现的数字不好处理.

11.(2003•全国)如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有 72 种.(以数字作答)

【分析】分类型,选3种颜色时,就是②④同色,③⑤同色;

4

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1