《幂的运算》提高练习题-(培优)Word格式.doc

上传人:b****2 文档编号:14641612 上传时间:2022-10-23 格式:DOC 页数:10 大小:427KB
下载 相关 举报
《幂的运算》提高练习题-(培优)Word格式.doc_第1页
第1页 / 共10页
《幂的运算》提高练习题-(培优)Word格式.doc_第2页
第2页 / 共10页
《幂的运算》提高练习题-(培优)Word格式.doc_第3页
第3页 / 共10页
《幂的运算》提高练习题-(培优)Word格式.doc_第4页
第4页 / 共10页
《幂的运算》提高练习题-(培优)Word格式.doc_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

《幂的运算》提高练习题-(培优)Word格式.doc

《《幂的运算》提高练习题-(培优)Word格式.doc》由会员分享,可在线阅读,更多相关《《幂的运算》提高练习题-(培优)Word格式.doc(10页珍藏版)》请在冰豆网上搜索。

《幂的运算》提高练习题-(培优)Word格式.doc

③﹣a4•(﹣a)5=a20;

④25+25=26.

A、0个 B、1个 C、2个 D、3个

二、填空题(共2小题,每小题5分,满分10分)

6、计算:

x2•x3= _________ ;

(﹣a2)3+(﹣a3)2= _________ .

7、若2m=5,2n=6,则2m+2n= _________ .

三、解答题(共17小题,满分70分)

8、已知3x(xn+5)=3xn+1+45,求x的值.

9、若1+2+3+…+n=a,求代数式(xny)(xn﹣1y2)(xn﹣2y3)…(x2yn﹣1)(xyn)的值.

10、已知2x+5y=3,求4x•32y的值.

11、已知25m•2•10n=57•24,求m、n.

12、已知ax=5,ax+y=25,求ax+ay的值.

13、若xm+2n=16,xn=2,求xm+n的值.

14、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式 _________ 

15、比较下列一组数的大小.8131,2741,961

16、如果a2+a=0(a≠0),求a2005+a2004+12的值.

17、已知9n+1﹣32n=72,求n的值.

18、若(anbmb)3=a9b15,求2m+n的值.

19、计算:

an﹣5(an+1b3m﹣2)2+(an﹣1bm﹣2)3(﹣b3m+2)

20、若x=3an,y=﹣,当a=2,n=3时,求anx﹣ay的值.

21、已知:

2x=4y+1,27y=3x﹣1,求x﹣y的值.

22、计算:

(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)5

23、若(am+1bn+2)(a2n﹣1b2n)=a5b3,则求m+n的值.

24、用简便方法计算:

(1)

(2)2×

42

(2)(﹣0.25)12×

412

(3)0.52×

25×

0.125(4)[()2]3×

(23)3

答案与评分标准

A、﹣299 B、﹣2

C、299 D、2

考点:

有理数的乘方。

分析:

本题考查有理数的乘方运算,(﹣2)100表示100个(﹣2)的乘积,所以(﹣2)100=(﹣2)99×

(﹣2).

解答:

解:

(﹣2)100+(﹣2)99=(﹣2)99[(﹣2)+1]=299.

故选C.

点评:

乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.

负数的奇数次幂是负数,负数的偶数次幂是正数;

﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.

(4)a2m=(﹣a2)m.

A、4个 B、3个

C、2个 D、1个

幂的乘方与积的乘方。

根据幂的乘方的运算法则计算即可,同时要注意m的奇偶性.

根据幂的乘方的运算法则可判断

(1)

(2)都正确;

因为负数的偶数次方是正数,所以(3)a2m=(﹣am)2正确;

(4)a2m=(﹣a2)m只有m为偶数时才正确,当m为奇数时不正确;

所以

(1)

(2)(3)正确.

故选B.

本题主要考查幂的乘方的性质,需要注意负数的奇数次幂是负数,偶数次幂是正数.

A、2x+3y=5xy B、(﹣3x2y)3=﹣9x6y3

单项式乘单项式;

幂的乘方与积的乘方;

多项式乘多项式。

根据幂的乘方与积的乘方、合并同类项的运算法则进行逐一计算即可.

A、2x与3y不是同类项,不能合并,故本选项错误;

B、应为(﹣3x2y)3=﹣27x6y3,故本选项错误;

C、,正确;

D、应为(x﹣y)3=x3﹣3x2y+3xy2﹣y3,故本选项错误.

(1)本题综合考查了整式运算的多个考点,包括合并同类项,积的乘方、单项式的乘法,需要熟练掌握性质和法则;

(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.

A、an与bn B、a2n与b2n

C、a2n+1与b2n+1 D、a2n﹣1与﹣b2n﹣1

有理数的乘方;

相反数。

两数互为相反数,和为0,所以a+b=0.本题只要把选项中的两个数相加,看和是否为0,若为0,则两数必定互为相反数.

依题意,得a+b=0,即a=﹣b.

A中,n为奇数,an+bn=0;

n为偶数,an+bn=2an,错误;

B中,a2n+b2n=2a2n,错误;

C中,a2n+1+b2n+1=0,正确;

D中,a2n﹣1﹣b2n﹣1=2a2n﹣1,错误.

本题考查了相反数的定义及乘方的运算性质.

注意:

一对相反数的偶次幂相等,奇次幂互为相反数.

A、0个 B、1个

C、2个 D、3个

整式的加减;

同底数幂的乘法。

①利用合并同类项来做;

②③都是利用同底数幂的乘法公式做(注意一个负数的偶次幂是正数,奇次幂是负数);

④利用乘法分配律的逆运算.

①∵a5+a5=2a5;

,故①的答案不正确;

②∵(﹣a)6•(﹣a)3=(﹣a)9=﹣a9,故②的答案不正确;

③∵﹣a4•(﹣a)5=a9;

,故③的答案不正确;

④25+25=2×

25=26.

所以正确的个数是1,

本题主要利用了合并同类项、同底数幂的乘法、乘法分配律的知识,注意指数的变化.

x2•x3= x5 ;

(﹣a2)3+(﹣a3)2= 0 .

第一小题根据同底数幂的乘法法则计算即可;

第二小题利用幂的乘方公式即可解决问题.

x2•x3=x5;

(﹣a2)3+(﹣a3)2=﹣a6+a6=0.

此题主要考查了同底数幂的乘法和幂的乘方法则,利用两个法则容易求出结果.

7、若2m=5,2n=6,则2m+2n= 180 .

先逆用同底数幂的乘法法则把2m+2n=化成2m•2n•2n的形式,再把2m=5,2n=6代入计算即可.

∴2m=5,2n=6,

∴2m+2n=2m•(2n)2=5×

62=180.

本题考查的是同底数幂的乘法法则的逆运算,比较简单.

三、解答题(共17小题,满分0分)

专题:

计算题。

先化简,再按同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即am•an=am+n计算即可.

3x1+n+15x=3xn+1+45,

∴15x=45,

∴x=3.

主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.

根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即am•an=am+n计算即可.

原式=xny•xn﹣1y2•xn﹣2y3…x2yn﹣1•xyn

=(xn•xn﹣1•xn﹣2•…•x2•x)•(y•y2•y3•…•yn﹣1•yn)

=xaya.

根据同底数幂相乘和幂的乘方的逆运算计算.

∵2x+5y=3,

∴4x•32y=22x•25y=22x+5y=23=8.

本题考查了同底数幂相乘,底数不变指数相加;

幂的乘方,底数不变指数相乘的性质,整体代入求解也比较关键.

先把原式化简成5的指数幂和2的指数幂,然后利用等量关系列出方程组,在求解即可.

原式=52m•2•2n•5n=52m+n•21+n=57•24,

∴,

解得m=2,n=3.

本题考查了幂的乘方和积的乘方,熟练掌握运算性质和法则是解题的关键.

由ax+y=25,得ax•ay=25,从而求得ay,相加即可.

∵ax+y=25,∴ax•ay=25,

∵ax=5,∴ay,=5,

∴ax+ay=5+5=10.

本题考查同底数幂的乘法的性质,熟练掌握性质的逆用是解题的关键.

同底数幂的除法。

根据同底数幂的除法,底数不变指数相减得出xm+2n÷

xn=xm+n=16÷

2=8.

xm+2n÷

2=8,

∴xm+n的值为8.

本题考查同底数幂的除法法则,底数不变指数相减,一定要记准法则才能做题.

14、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式 10α+β+γ .

把105进行分解因数,转化为3和5和7的积的形式,然后用10a、10β、10γ表示出来.

105=3×

7,而3=10a,5=10β,7γ=10,

∴105=10γ•10β•10α=10α+β+γ;

故应填10α+β+γ.

正确利用分解因数,根据同底数的幂的乘法的运算性质的逆用是解题的关键.

先对这三个数变形,都化成底数是3的幂的形式,再比较大小.

∵8131=(34)31=3

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 销售营销

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1