《大学物理》下册复习资料Word文件下载.doc

上传人:b****2 文档编号:14618850 上传时间:2022-10-23 格式:DOC 页数:6 大小:456.68KB
下载 相关 举报
《大学物理》下册复习资料Word文件下载.doc_第1页
第1页 / 共6页
《大学物理》下册复习资料Word文件下载.doc_第2页
第2页 / 共6页
《大学物理》下册复习资料Word文件下载.doc_第3页
第3页 / 共6页
《大学物理》下册复习资料Word文件下载.doc_第4页
第4页 / 共6页
《大学物理》下册复习资料Word文件下载.doc_第5页
第5页 / 共6页
点击查看更多>>
下载资源
资源描述

《大学物理》下册复习资料Word文件下载.doc

《《大学物理》下册复习资料Word文件下载.doc》由会员分享,可在线阅读,更多相关《《大学物理》下册复习资料Word文件下载.doc(6页珍藏版)》请在冰豆网上搜索。

《大学物理》下册复习资料Word文件下载.doc

①直导线切割磁力线;

②L不动且已知的值)

[注]①此方法尤其适用动生、感生兼有的情况;

②求时沿B相同的方向取dS,积分时t作为常量;

③长直电流;

④的结果是函数式时,根据“>

0即减小,感应电流的磁场方向与回路中原磁场同向,而与感应电流同向”来表述电动势的方向:

>

0时,沿回路的顺(或逆)时针方向。

2.自感电动势,阻碍电流的变化.单匝:

多匝线圈;

自感系数

互感电动势,。

(方向举例:

1线圈电动势阻碍2线圈中电流在1线圈中产生的磁通量的变化)

若则有;

,,;

互感系数

3.电磁场与电磁波

位移电流:

,(各向同性介质)下标C、D分别表示传导电流、位移电流。

全电流定律:

;

全电流:

麦克斯韦方程组的意义(积分形式)

(1)(电场中的高斯定理——电荷总伴有电场,电场为有源场)

(2)(电场与磁场的普遍关系——变化的磁场必伴随电场)

(3)(磁场中的高斯定理——磁感应线无头无尾,磁场为无源场)

(4)(全电流定律——电流及变化的电场都能产生磁场)

其中:

,,

二、简谐振动

1.简谐运动的定义:

(1);

(2);

(3)x=Acos(ωt+φ)

弹簧振子的角频率

2.求振动方程——由已知条件(如t=0时的大小,v0的方向正、负)求A、φ。

其中求φ是关键和难点。

(其中φ的象限要结合正弦或余弦式确定)

可直接写φ的情况:

振子从x轴正向最远端处由静止释放时φ=0,A=,从x轴负向最远端由静止释放时

(1)公式法:

(一般取|φ|≤π)

[说明]同时应用上面左边的两式即可求出A和值(同时满足、的正、负关系)。

如果用上面的tg式求φ将得到两个值,这时必须结合或的正、负关系判定其象限,也可应用旋转矢量确定值或所在象限。

(2)旋转矢量法:

由t=0时的大小及v0的方向可作出旋转矢量图。

反之,由图可知A、φ值及v0方向。

(3)振动曲线法:

由x-t图观察A、T。

由特征点的位移、速度方向(正、负),按方法

(1)求φ。

其中振动速度的方向是下一时刻的位置移动方向,它不同于波动中用平移波形图来确定速度方向。

3.简谐振动的能量:

Ek=,Ep=,E=Ek+Ep=。

[注意]振子与弹簧的总机械能E守恒,E等于外界给系统的初始能量(如作功)。

4.振动的合成:

x=x1+x2=A1cos(ωt+φ1)+A2cos(ωt+φ2)=Acos(ωt+φ)

其中,

当Δφ=φ2-φ1=2kπ时:

A=A1+A2(加强)

当Δφ=φ2-φ1=(2k+1)π时:

A=|A1-A2|(减弱)

[注意]上式求出的对应两个值,必须根据v0的方向确定其中的正确值(具体方法同上面内容2.中的说明)。

如果同一方向上两个振动同相位(或反相位),则将两分振动的函数式相加(或相减),就可得到合振动。

三、简谐波,ω=2π,κ=2π/λ。

由振源的振动决定,u、λ因介质的性质而异。

1.求波动方程(波函数)的方法

(1)已知原点O处的振动方程:

直接由y0=Acos(ωt+φ)写出波动方程y=Acos[ω(t)+φ]

[注意]当波沿x轴负向传播时,上式中x前改为+号。

波动方程表示x轴上任一点(坐标为x)的振动。

(原点处振动传到x处需时间等于,即x处相位比O点落后2πx/λ。

上面两式为同一值)

如果没有直接给出O点的振动方程,也可以按【四】中所述的方法,由题给条件求出原点处的振动式,再改写为波动式。

(2)先设波动方程(波沿X轴正向传播时,波沿x轴负向传播时x前符号为+),并写出速度式

,根据题给条件求A、、。

其方法与求振动方程相似。

公式法:

将题中条件(如t=0时x处y值及v正负)代入波动方程与速度式,可联立求解值。

波动曲线法:

由图可知A、、u的方向(决定波动方程中x项的符号),以及波形图所对应的t’时刻各质元的位移、速度方向(按波速方向平移波动曲线可得)。

按公式法,由x、v值可求出,如果给出了时的波形图,还可求出。

旋转矢量法:

根据某一时刻(t=0或t’时刻)、某一点的y值以及v的方向作矢量图,可确定值。

对两列波在某一点处的合振动,由φ1与φ2作相量图,对特殊角可直接求φ,对一般角可确定φ的象限。

2.由波动方程求某处质元的振动方程与速度:

将x值代入上面的波动方程与速度公式即可,也可画振动曲线。

这时,用加下标的y表示具体点的振动位移(不要将其写作x)。

3.波的能量波的传播是能量的传播。

在传播过程中质元的动能和势能在任何时刻都相等(与质点的振动不同),在平衡位置处ΔWk=ΔWp=(最大),在最大位移处ΔWk=ΔWp=0

4.波的干涉(两相干波的叠加)①相干条件:

频率相同,振动方向一致,位相差恒定;

②相位差与相长干涉、相消干涉:

Δφ=φ2-φ1=

5.半波损失:

波从波疏媒质(ρu较小)传向波密媒质(ρu较大),在反射点处,反射波与入射波的相位差Δφ=,波程差Δ=(相当于反射波多走了)。

(注)相位差等价,但一般取+π,波程差等价。

6.驻波:

两列振幅相等的相干波,在同一直线上沿相反方向传播,所形成的分段振动的现象。

相邻波节(或波腹)之间的距离为。

取波腹为坐标原点,则波节位置=,波腹位置=(k=0,1,2…)

弦线上形成驻波的条件:

L=(n=1,2…)

波从波疏媒质传向固定端并形成驻波时,是半波反射,固定端是波节;

波从波密媒质传向自由端并形成驻波时,是全波反自由端是波腹。

注意:

对于角频率相同的两个振动或两列波的合成问题,如果初相位为时可将方程式化为正弦或余弦式,再直接相加。

四、光的干涉

1.获得相干光的方法:

把一个光源的一点发出的光分为两束,具体有分波阵面法和分振幅法

2.光程:

光程(光在介质中传播r距离,与光在真空中传播nr距离时对应的相位差相同)

相位差与光程差的关系:

在一条光线传播的路径上放置折射率为n,厚度为d的透明介质,引起的光程改变为(n-1)d;

介质内

3.杨氏双缝干涉:

分波阵面法,干涉条纹为等间隔的直条纹。

(入射光为单色光,光程差Δ=dsinθ)

明条纹:

dsinθ=±

kλ(中央明纹对应于k=0,θ=0)

中心位置xk=Dtgθ≈Dsinθ=±

kλ(k=0,1,2,…)

暗纹:

λ,中心位置xk=Dtgθ≈Dsinθ=±

λ(k=0,1,2,3,…)

相邻明(暗)纹间隔:

Δx=λ,相邻两明(或暗)纹对应的光程差为λ,相邻明、暗纹光程差为λ/2

典型问题:

在缝S1上放置透明介质(折射率为n,厚度为b),求干涉条纹移动方向、移动的条纹数目、条纹移动的距离。

分析:

(1)判断中央明纹(Δ=0)的移动。

在缝S1上放置透明介质后,上边光路的光程增大(n-1)d,只有下边光路的光程也增

大,由可知,新的中央明纹在O点上方,因此条纹整体向上移动。

(如果在缝S2上放置透明介质则条纹向下移)

(2)设新中央明纹的位置在原条纹的k级明纹处,其坐标为xk。

由(n-1)b=k’λ可求出移动的条纹数k’=(n-1)b/λ;

由(n-1)b=dsin,可求出中央条纹移动的距离=Dtg≈Dsin=(n-1)bD/d,也是所有条纹整体移动的距离。

4.薄膜干涉1――等厚条纹(同一条纹对应的膜厚相等.包括劈尖膜、牛顿环):

光线近于垂直入射到薄膜的上表面,在薄膜上下表面处产生的两反射光发生干涉。

(反射光有一次且只有一次半波损失时才加入项);

同一条纹处等厚,相邻两明(或暗)纹间隔为,对应的厚度差为

牛顿环半径:

明纹,(k=1,…);

暗纹,(k=0,…)

5.薄膜干涉2――增透膜、增反膜(均厚介质表面镀膜,光线垂直入射,对特定波长的反射光分别发生

相消、相长干涉,以增加入射光的透射率、反射率)

光程差:

(膜的上下两表面中只存在一次半波损失时才加上)

6.迈克尔逊干涉仪:

利用分振幅法产生双光束干涉,干涉条纹每移动一条相当于空气膜厚度改变。

两反射镜到分光点的距离差为h,则Δ=2h;

在干涉仪一条光路上放置透明介质(n,b),则光程差的改变量为2(n-1)b。

薄膜干涉的分析步骤:

以膜的上下表面为反射面,判断半波反射,求出光程差,由干涉相长(或相消)条件确定明纹(或暗纹)。

五、光的衍射

1.惠更斯—菲涅耳原理:

子波,子波干涉

2.单缝(半波带法):

暗纹,明纹dsinθ=±

λ,式中k=1,2,3,…(与双缝干涉的暗纹公式不同!

(中央明纹中心对应于θ=0。

条纹不等宽,中央宽,其它窄,光强主要集中在中央明纹内)

中央明条纹线宽度:

Δx0=2*f*tgθ=2*fsinθ=2fλ/a(衍射反比定律:

f、一定时,)

3.光栅衍射:

光栅方程(决定主极大位置):

(k=0,1,2,…,km其中d=a+b,a为透光缝宽;

(应用——①可见的最高谱线级次:

由θ=π/2求kmax=,kmax带小数时km取其整数,kmax恰为整数时km=kmax-1。

(kmax对应的位置无限远,看不见);

②谱线强度受单缝衍射调制,一般有缺级现象。

为整数时,它就是第一缺级;

③求单缝衍射明纹或光栅主极大位置xk的方法与双缝干涉相似,但要注意θ角较大时tgθ≠sinθ;

④单缝衍射中央明纹内有(2k-1)条干涉明纹(dsinθ=kλ,asinθ=λ);

⑤两种入射光波长不同时,光栅谱线重叠表示对应同一衍射角θ;

(附1)入射光倾斜入射时,Δ=AC+CB=d(sini±

sinθ),入射光与衍射光在光轴同侧时取正号,k值正负取决坐标正向。

(附2)双缝干涉——明暗条纹相间且等间隔;

单缝衍射——中央明纹亮且宽,其它明纹光强迅速下降。

光栅衍射——明纹窄而亮,中央明纹宽度约为双缝干涉的1/N。

(附3)几何光学是波动光学在λ/a→0时的极限情形。

4.光学仪器分辨本领仪器的最小分辨角(角分辨率):

,其倒数为分辨率R。

单孔衍射:

(θ为中央亮斑半径对圆孔中心的张角,D为透镜直径)

5.X射线衍射布拉格公式(主极大):

φ=kλk=1,2,…,(掠射角φ:

入射光与晶面夹角)

六、光的偏振按偏振状态将光分为线偏振光、自然光、部分偏振光。

线偏振光也称完全偏振光或平面偏振光。

1.马吕斯定律:

I=I0cos2α(I0为入射的线偏振光强度,α为入射光E振动方向与检偏器偏振化方向的夹角)

偏振化方向即振动方向。

理想情况下,右图中自然光通过三个偏振片,光强

依次为,,

2.布

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 军事政治

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1