植物生理学课后习题_精品文档Word格式文档下载.doc

上传人:b****2 文档编号:14436660 上传时间:2022-10-22 格式:DOC 页数:52 大小:228KB
下载 相关 举报
植物生理学课后习题_精品文档Word格式文档下载.doc_第1页
第1页 / 共52页
植物生理学课后习题_精品文档Word格式文档下载.doc_第2页
第2页 / 共52页
植物生理学课后习题_精品文档Word格式文档下载.doc_第3页
第3页 / 共52页
植物生理学课后习题_精品文档Word格式文档下载.doc_第4页
第4页 / 共52页
植物生理学课后习题_精品文档Word格式文档下载.doc_第5页
第5页 / 共52页
点击查看更多>>
下载资源
资源描述

植物生理学课后习题_精品文档Word格式文档下载.doc

《植物生理学课后习题_精品文档Word格式文档下载.doc》由会员分享,可在线阅读,更多相关《植物生理学课后习题_精品文档Word格式文档下载.doc(52页珍藏版)》请在冰豆网上搜索。

植物生理学课后习题_精品文档Word格式文档下载.doc

7.根压(rootpressure):

由于水势梯度引起水分进入中柱后产生的压力。

8.蒸腾作用(transpiration):

水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。

9.蒸腾速率(transpirationrate):

植物在一定时间内单位叶面积蒸腾的水量。

10.蒸腾比率(transpirationratio,TR):

植物蒸腾丢失水分和光合作用产生的干物质的比值。

11.水分利用率—wateruseefficiency—指植物制造1g干物质所消耗的水分克数.

12.内聚力学说—cohesiontheory—以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说。

相同水分子间,具有相互吸引的力量,称为内聚力。

叶片蒸腾失水后,便从下部吸水,所以水柱一端总是受到压力,与此同时,水柱本身的重量又使水柱下降,这样上拉下堕使水柱产生张力。

众所周知,水分子与水分子之间的内聚力很大,可达-300×

105Pa,同时水分子与导管或管胞内纤维素分子之间还有强的附着力,它们远远大于水柱的张力(-5~-30×

105Pa),故可使水柱不断。

13.水分临界期—criticalperiodofwater—植物对水分不足特别敏感的时期。

思考题

1.将植物细胞分别放在纯水和1mol/L蔗糖溶液中,细胞的渗透势.压力势.水势及细胞体积各会发生什么变化?

答:

放在纯水中:

细胞吸水,渗透势增大,压力势增大,水势增大,体积增大.蔗糖溶液中:

细胞失水,渗透势减小,压力势减小,水势减小,细胞体积减小

2.从植物生理学角度,分析农谚”有收无收在于水”的道理

水分在植物中的作用是很大的:

1水分是细胞质的主要成分2水分是代谢作用过程的反应物质3水分是植物对物质吸收和运输的溶剂4水分能保持植物的固有姿态5细胞分裂和生长需要足够水.

3.水分是如何跨膜运输到细胞内以满足正常的生命活动的需要的?

植物细胞吸水主要有3种方式:

扩散,集流和渗透作用,最后一种方式是前两种方式的组合,在细胞吸水中占主要地位。

扩散是物质依浓度梯度向下移动,集流是物质依压力梯度

向下移动的,而渗透作用是物质依水势梯度而移动。

当细胞内的水势比细胞外的水势低时,细胞吸水,水从细胞外向细胞内移动。

水分集流是通过膜上的水孔蛋白形成水通道实施的。

4.水分是如何进入根部导管的?

水分又是如何运输到叶片的?

首先,植物的根系在土壤中吸水,主要在根尖进行。

通过质体外途径,跨膜途径和共质体途径。

经过根毛,根皮层,根中柱鞘,根导管。

然后在根压与蒸腾拉力的推动下,水分从下往上运输,其中蒸腾拉力是主要的动力。

相同分子之间有相互吸引力,即内聚力。

叶片在蒸腾失水后,便从下部吸水,所以水柱一端总是受到拉力,与此同时,水柱本身的质量又使水柱下降,这样上拉下坠使水柱产生张力。

水分子的内聚力很大,比水柱张力大,故可以使水柱不断,这样,水分就可以运输到叶片了。

5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭?

光照条件下,保卫细胞质膜上的质子泵ATP酶活化,质子泵排出质子到质膜外,使得质膜内侧的电势更负,于是通过各种通道吸收各种离子和积累有机溶质于液泡,气孔会张开。

而黑暗条件下,质子泵ATP酶无法活化,从而无法进行以下过程,气孔关闭;

光照条件下,保卫细胞光合作用消耗CO2,细胞质内的pH增高,淀粉水解为可溶性糖,保卫细胞水势下降,便从周围细胞吸取水分,气孔便张开。

在黑暗条件下,则正好相反。

6.气孔的张开与保卫细胞的什么结构有关?

与保卫细胞的细胞壁有关。

由于保卫细胞壁的厚度不同,加上纤维素微纤丝与胞壁相连,所以会导致气孔运动。

例如,双子叶植物的肾形保卫细胞的内壁(靠气孔一侧)厚而外壁薄,微纤丝从气孔呈扇形辐射排列。

当保卫细胞吸水膨胀时,较薄的外壁易于伸长,向外扩展,但微纤丝难以伸长,于是将力量作用于内壁,把内壁拉过来,于是气孔张开。

7.节水农业工程对我国的农业生产有什么意义?

我国是世界上贫水国之一,加上有限的水资源分布不均匀,西北、华北地区极度缺水,限制农业的发展。

节水农业工程能用较少的水源得到较大的收益,提高水分利用效率,无疑给我国的农业生产带来新的突破。

8.在栽培作物时,如何才能做到合理灌溉?

在生产实践中,我们应该尽可能地维持作物的水分平衡。

水分平衡是指植物吸水量足补偿蒸腾失水量的状态。

水分平衡破坏时,常发生萎蔫现象,农业上用灌溉来保证作物是水分供应;

移栽植物时常剪去部分枝叶以减少蒸腾,目的在于保持水分平衡。

在栽培作物时,应该客观地根据植物外部性征来灌溉。

可以通过叶片水势,细胞液浓度,渗透势和气孔开度来辨别是否需水。

节水灌溉有几种方法,喷灌,滴灌,调亏灌溉和控制性分根交替灌溉。

9.设计一个证明植物具有蒸腾作用的实验装置。

用容积法测定植物具有蒸腾作用。

将带叶的植物枝条通过一段乳胶管与一支滴定管相连,管内充满水,组成一个简易蒸腾计。

过一段时间后,如果管内的水减少了,就可以证明植物具有蒸腾作用。

10.设计一个测定水分运输速度的实验

可对水分染色通过对该颜色观察并记录一定时间所运输的距离测定运输速度

11.如何利用水份亏缺的生理变化应用于农业生产,以达到节水高产双赢的目的?

我们应该尽可能维持作物的水分平衡,合理灌溉:

1喷灌2滴灌3调亏灌溉4控制性分根交替灌溉。

第三章

1.光合作用—photosynthesis—绿色植物吸收阳光的能量,同化CO2和水,制造有机物质并释放氧气的过程。

2.吸收光谱—absorptionspectrum—是材料在某一些频率上对电磁辐射的吸收所呈现的比率,与发射光谱相对。

如果把叶绿素溶液放在光源和分光镜的中间,就可以看到光谱中有些波长的光被吸收了,因此,在光谱上出现黑线或暗带,这种光谱称为吸收光谱。

3.荧光现象(fluorescence):

叶绿素溶液在透射光下呈绿色,而在反射光下呈红色(叶绿素a为血红光,叶绿素b为棕红光),这种现象称为荧光现象。

4.磷光现象(phosphorescence):

叶绿素除了照光时间能辐射出荧光外,去掉光源后仍能辐射出微弱红光,它是第一三线态回到基态时所产生的光,既为磷光。

5.增益效应(enhancementeffect):

两种波长的光协同作用而增加光合效率的现象称为增益效应或爱默生效应。

6.光反应(lightreaction):

是必须在光下才能进行的。

光反应是叶绿素等色素吸收光能,将光能转化为化学能,形成ATP和NADPH的过程,光反应包括光能吸收、电子传递、光合磷酸化等三个主要步骤,在类囊体膜上进行。

【甘增宇200830050204】

7.碳反应(carbonreaction):

是在暗处或光处都能进行的,由若干酶所催化的化学反应,叶绿体利用光反应产生的ATP和NADPH这两个高能化合物分别作为能源和还原的动力,经过酶的催化,将CO2固定并转变为糖,在叶绿体的基质中进行。

8.光合单位:

(photosyntheticunit)是指结合在类囊体膜上能进行光合作用的最小结构单位。

光合单位=聚光色素系统+反应中心

9.聚光色素(天线色素):

(light-harvestingpigment)无光化学活性,只收集光能,传到反应中心色素,包括绝大多数色素(大部份叶绿素a、全部叶绿素b、胡罗卜素、叶黄素)都属于聚光色素。

10.原初反应:

(primaryreaction)光合作用第一步,从叶绿素受光激发到引起第一个光反应为止,包括色素分子对光能的吸收、传递和转换的过程,两个光系统都参加

11.反应中心:

(reactioncentre)将光能转化为化学能的膜蛋白复合体,包括特殊叶绿素a,脱镁叶绿素和醌等电子受体

12.希尔反应:

(Hillreaction)光照下,水在光系统2的类囊体膜腔表面经放氧复合体作用,放出氧气,产生电子,释放质子到类囊体腔内

11.光和链:

(light 

and 

chain)在类囊体膜上的PSⅡ和PS之间几种排列紧密的电子传递体完成电子传递的总轨道。

12.光和磷酸化:

(Light 

phosphorylation)在光和作用中由光驱动并贮存的跨膜类囊体膜的质子梯度的能量把ADP和磷酸合成为ATP的过程。

13.光和速率:

speed) 

光合作用强弱的一种表示法,又称“光合强度”。

光合速率的大小可用单位时间、单位叶面积所吸收的CO2或释放的O2表示,亦可用单位时间、单位叶面积所积累的干物质量表示。

14.同化力:

(assimilatory 

power)是通过NADPH和ATP所推动的一系列CO2同化过程,把CO2变成糖类等有机物质。

从物质生产角度来看,占植物体干重90%以上的有机物质,都是通过碳同化并转化而成的。

碳同化是在叶绿体的基质中进行的,有许多种酶参与的反应。

由于ATP和NADPH用于碳反应中的CO2同化,所以把这两种物质合成为同化力。

15.卡尔文循环:

(The 

Calvin 

cycle) 

卡尔文循环(Calvin 

Cycle)是所有植物光合作用碳同化的基本途径,反应场所为叶绿体内的基质。

循环可分为三个阶段:

 

羧化阶段、还原阶段和更新阶段,整个循环是利用ATP作为能量来源,并以降低能阶的方式来消耗NADPH,如此可增加高能电子来制造糖。

16.C4循环(C4-dicarboxylicacidpathway):

植物固定CO2时,最初的稳定产物是四碳二羧酸化合物(苹果酸和天冬氨酸)的生活途径。

17.光抑制(photoinhibition):

光能超过光合系统所能利用的数量时,光合功能下降,这个现象就称为光合作用的光抑制。

18.景天酸代谢途径(crassulaceanacidmetabolism,CAM):

夜晚气孔开放,吸进CO2,在PEP羧激酶作用下,与PEP结合,形成OAA,进一步还原为苹果酸,积累于液泡中。

白天气孔关闭,液泡中的苹果酸便运到胞质溶胶,在NAD-苹果酸酶作用下,氧化脱羧,放出CO2,参与卡尔文循环,形成淀粉等。

此外,丙糖磷酸通过糖酵解过程,形成PEP,再进一步循环。

这种有机酸合成日变化的代谢类型,最早发现于景天科植物,所以称为景天酸代谢途径。

19.光呼吸(photorespiration):

植物的绿色细胞依赖光照,吸收O2和放出CO2的过程。

20.表观光合作用(apparentphotosynthesis):

叶绿体吸收CO2和释放O2的过程。

测定光合速率时没将线粒体呼吸和光呼吸考虑在内,所得的结果是表观表观光合作用

21.真正光合作用:

(truephotosynthesis)呼吸作用加上表观光合作用及光呼吸,就是真正光合作用。

22.光饱和点:

(lightsaturationpoint)在一定范围内,光合速率随着光照强度的增加而加快,光合

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1