中考应用题精选含答案文档格式.docx

上传人:b****4 文档编号:14372120 上传时间:2022-10-22 格式:DOCX 页数:31 大小:296.69KB
下载 相关 举报
中考应用题精选含答案文档格式.docx_第1页
第1页 / 共31页
中考应用题精选含答案文档格式.docx_第2页
第2页 / 共31页
中考应用题精选含答案文档格式.docx_第3页
第3页 / 共31页
中考应用题精选含答案文档格式.docx_第4页
第4页 / 共31页
中考应用题精选含答案文档格式.docx_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

中考应用题精选含答案文档格式.docx

《中考应用题精选含答案文档格式.docx》由会员分享,可在线阅读,更多相关《中考应用题精选含答案文档格式.docx(31页珍藏版)》请在冰豆网上搜索。

中考应用题精选含答案文档格式.docx

9

8

1062

(1)小林以折扣价购买商品A、B是第  次购物;

(2)求出商品A、B的标价;

(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?

 

2.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.

(1)求每台A型电脑和B型电脑的销售利润;

(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.

①求y关于x的函数关系式;

②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?

(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及

(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.

3.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).

(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;

(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;

(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?

4.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;

当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:

当20≤x≤220时,车流速度v是车流密度x的一次函数.

(1)求大桥上车流密度为100辆/千米时的车流速度;

(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?

(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:

车流量=车流速度×

车流密度.求大桥上车流量y的最大值.

5.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;

B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:

万元/吨)与销售数量x(x≥2)之间的函数关系如图;

B类杨梅深加工总费用s(单位:

万元)与加工数量t(单位:

吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.

(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;

(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).

①求w关于x的函数关系式;

②若该公司获得了30万元毛利润,问:

用于直销的A类杨梅有多少吨?

(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.

6.某商店经销甲、乙两种商品,现有如下信息:

信息1:

甲、乙两种商品的进货单价之和是50元;

信息2:

甲商品零售单价比进货单价多10元,乙商品零售单价比进货单价的2倍少10元;

信息3:

按零售单价购买甲商品3件和乙商品2件,共付了190元.

请根据以上信息,解答下列问题:

(1)甲、乙两种商品的进货单价各多少元?

(2)该商店平均每天卖出甲商品60件和乙商品40件,经调查发现,甲、乙两种商品零售单价分别每降1元,这两种商品每天可多卖出10件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?

每天的最大利润是多少?

7.某商品现在的售价为每件40元,每天可以卖出200件,该商品将从现在起进行90天的销售:

在第x(1≤x≤49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;

在第x(50≤x≤90)天内,每天的售价都是90元,销量仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售该商品的当天利润为y元.

(1)填空:

用含x的式子表示该商品在第x(1≤x≤90)天的售价与销售量.

第x(天)

1≤x≤49

50≤x≤90

当天售价(元/件)

  

当天销量(件)

(2)求出y与x的函数关系式;

(3)问销售商品第几天时,当天销售利润最大,最大利润是多少?

(4)该商品在销售过程中,共有多少天当天销售利润不低于4800元?

请直接写出结果.

8.我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:

移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:

品种

购买价(元/棵)

成活率

20

90%

32

95%

设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:

(1)求y与x之间的函数关系式,并写出自变量取值范围;

(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?

(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;

若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?

最大利润是多少?

9.某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:

元)与产量x(单位:

kg)之间满足关系式y1=.如图中线段AB表示每千克销售价格y2(单位:

kg)之间的函数关系式.

(1)试确定每千克销售价格y2(单位:

kg)之间的函数关系式,并写出自变量的取值范围;

(2)若用w(单位:

元)表示销售该农产品的利润,试确定w(单位:

kg)之间的函数关系式;

(3)求销售量为70kg时,销售该农产品是盈利,还是亏本?

盈利或亏本了多少元?

10.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:

元)、销售价y2(单位:

kg)之间的函数关系.

(1)请解释图中点D的横坐标、纵坐标的实际意义;

(2)求线段AB所表示的y1与x之间的函数表达式;

(3)当该产品产量为多少时,获得的利润最大?

11.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:

(1)A、B两地之间的距离为  km;

(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;

(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x的取值范围.

12.科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:

①在科研所到宿舍楼之间修一条笔直的道路;

②对宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=a+b(0≤x≤9).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;

当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理.设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费.

(1)当科研所到宿舍楼的距离x=9km时,防辐射费y=  万元,a=  ,b=  ;

(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?

(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值.

13.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:

调整价格时,售价每涨1元每月要少卖10件;

售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).

(1)直接写出y与x之间的函数关系式;

(2)如何确定销售价格才能使月利润最大?

求最大月利润;

(3)为了使每月利润不少于6000元应如何控制销售价格?

14.某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:

kg)之间的函数关系;

线段CD表示该产品销售价y2(单位:

kg)之间的函数关系,已知0<x≤120,m>60.

(1)求线段AB所表示的y1与x之间的函数表达式;

(2)若m=95,该产品产量为多少时,获得的利润最大?

(3)若60<m<70,该产品产量为多少时,获得的利润最大?

15.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:

(1)根据图象,直接写出y1、y2关于x的函数图象关系式;

(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;

(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.

16.科技馆是少年儿童节假日游玩的乐园.

如图所示,图中点的横坐标x表示科技馆从8:

30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:

00之后来的游客较少可忽略不计.

(1)请写出图中曲线对应的函数解析式;

(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:

30开始到12:

00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?

17.有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.

(1)设X天后每千

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 艺术

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1