人教版初一数学上册全册优化教案广东教案Word格式.docx

上传人:b****4 文档编号:14358911 上传时间:2022-10-22 格式:DOCX 页数:88 大小:256.38KB
下载 相关 举报
人教版初一数学上册全册优化教案广东教案Word格式.docx_第1页
第1页 / 共88页
人教版初一数学上册全册优化教案广东教案Word格式.docx_第2页
第2页 / 共88页
人教版初一数学上册全册优化教案广东教案Word格式.docx_第3页
第3页 / 共88页
人教版初一数学上册全册优化教案广东教案Word格式.docx_第4页
第4页 / 共88页
人教版初一数学上册全册优化教案广东教案Word格式.docx_第5页
第5页 / 共88页
点击查看更多>>
下载资源
资源描述

人教版初一数学上册全册优化教案广东教案Word格式.docx

《人教版初一数学上册全册优化教案广东教案Word格式.docx》由会员分享,可在线阅读,更多相关《人教版初一数学上册全册优化教案广东教案Word格式.docx(88页珍藏版)》请在冰豆网上搜索。

人教版初一数学上册全册优化教案广东教案Word格式.docx

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

学生交流后,教师归纳:

以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

【探索2】

前面带有“一”号的新数我们应怎样命名它呢?

为什么要引人负数呢?

通常在日常生活中我们用正数和负数分别表示怎样的量呢?

这些问题都必须要求学生理解,教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。

然后总结:

大于0的数叫做正数,而在正数前面加上负号“-”的数叫做负数。

这阶段主要是让学生学会正数和负数的表示。

强调:

用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:

一是它们的意义相反,如向东与向西,收人与支出;

二是它们都是数量,而且是同类的量。

【探索3】

经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

提出问题:

请同学们举出用正数和负数表示的例子。

你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?

请举例说明。

【练习】P3练习1,2,3,4

【小结】

围绕下面两点,以师生共同交流的方式进行:

1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

3、0既不是正数也不是负数。

1.1正数和负数

(2)

1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)

3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

深化对正负数概念的理解

正确理解和表示向指定方向变化的量

【知识回顾与深化】

回顾:

上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:

数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

有没有一种既不是正数又不是负数的数呢?

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准。

这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导)

例如:

在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。

那么某一天某地的最高温度是

零上7℃,最低温度是零下5℃时,就应该表示为+7℃

和-5℃,这里+7℃和-5℃就分别称为正数和负数.

那么当温度是零度时,我们应该怎样表示呢?

(表示为0℃),它是正数还是负数呢?

由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。

引入负数后,数按照“两种相反意义的量”来分,可以分成几类?

例题:

(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

(2)2001年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%。

写出这些国家2001年商品进出口总额的增长率。

 

说明:

这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;

向指定方向的相反方向变化用负数表示。

这种描述在实际生活中有广泛的应用,应予以重视。

教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:

在同一个问题中,分别用正数和负数表示的量具有相反的意义。

类似的例子很多,如:

水位上升-3m,实际表示什么意思呢?

收人增加-10%,实际表示什么意思呢?

等等。

可视教学中的实际情况进行补充.

【练习】P4练习

以问题的形式,要求学生思考交流:

1、引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

2、怎样用正负数表示具有相反意义的量?

(用正数表示其中一种意义的量,另一种量用负数表示;

特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

1.2.1有理数

1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3、体验分类是数学上的常用处理问题的方法。

正确理解正负数分类的标准和按照一定的标准进行分类。

【知识难点】

正确理解有理数的概念。

在以前的学习中,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

观察黑板上的9个数,并给它们进行分类。

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:

5和5.1有相同的类型吗?

5可以表示5个人,而5.1可以表示人数吗?

(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,.·

·

…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数”,然后得出“整数”“分数”和“有理数”的概念。

试一试:

按照以上的分类,你能画出一张有理数的分类表吗?

你能说出以上有理数的分类是以什么为标准的吗?

(是按照整数和分数来划分的)

1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2、P8练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:

上面练习中的四个集合合并在一起就是全体有理数的集合吗?

有理数可分为正数和负数两大类,对吗?

为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

1.2.2数轴

1、掌握数轴的概念,理解数轴上的点和有理数的对应关系;

2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

【教学难点】&

数轴的概念和用数轴上的点表示有理数

教师通过实例演示得到温度计读数.

问题1:

温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?

请你尝试读出图中三个温度计所表示的温度?

问题2:

在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

(小组讨论,交流合作,动手操作)

教师:

由上述两问题我们得到什么启发?

你能用一条直线上的点表示有理数吗?

让学生在讨论的基础上动手操作,在操作的基础上归纳出:

可以表示有理数的直线必须满足什么条件?

从而得出数轴的概念以及数轴的三要素:

原点、正方向、单位长度。

数轴:

一般地,在数学中人们用画图的方式把数“直观化”。

通常用一条直线上的点表示数,这条直线叫做数轴。

数轴三要素:

(1)在直线上任取一个点表示数0,这个点叫做原点。

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向。

(3)选取适当的长度为单位长度。

1、你能举出一些在现实生活中用直线表示数的实际例子吗?

2、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?

如果给你数轴上的点,你能读出它所表示的数吗?

3、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4、每个数到原点的距离是多少?

由此你会发现了什么规律?

(小组讨论,交流归纳)

归纳出一般结论,教科书第9页的归纳。

一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;

表示数—a的点在原点的左边,与原点的距离是a个单位长度。

【练习】P10练习

1、数轴的三个要素;

2、数轴的做法以及数与点的转化方法。

1.2.3相反数

1、掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

2、通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

3、体验数形结合的思想。

归纳相反数在数轴上表示的点的特征

相反数的概念

请将下列4个数分成两类,并说出为什么要这样分类。

4, 

-2,-5,+2

允许学生有不同的分法,只要能说出道理,都要给予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)

思考结论:

P10的思考:

数轴上与原点的距离是2的点有几个?

这些点表示的数是什么?

与原点的距离是5的点有几个?

再换2个类似的数试一试。

归纳:

一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,我们说这两点关于原点对称。

给出相反数的定义:

只有符号不同的两个数叫做互为相反数。

你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?

零的相反数是什么?

学生思考讨论交流,教师归纳总结。

规律:

一般地,数a的相反数可以表示为-a。

0的相反数是0.

数轴上表示相反数的两个点和原点有什么关系?

(关于原点对称。

【练习】P11练习1

-(+5)和-(-5)分别表示什么意思?

你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5

【练习】P11页练习2、3。

1、相反数的定义

2、互为相反数的数在数轴上表示的点的特征

3、怎样求一个数的相反数?

怎样表示一个数的相反数?

1.2.4绝

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 商业计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1