新人教版九年级上期中数学试题含答案解析Word格式文档下载.docx

上传人:b****1 文档编号:14279471 上传时间:2022-10-21 格式:DOCX 页数:25 大小:132.87KB
下载 相关 举报
新人教版九年级上期中数学试题含答案解析Word格式文档下载.docx_第1页
第1页 / 共25页
新人教版九年级上期中数学试题含答案解析Word格式文档下载.docx_第2页
第2页 / 共25页
新人教版九年级上期中数学试题含答案解析Word格式文档下载.docx_第3页
第3页 / 共25页
新人教版九年级上期中数学试题含答案解析Word格式文档下载.docx_第4页
第4页 / 共25页
新人教版九年级上期中数学试题含答案解析Word格式文档下载.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

新人教版九年级上期中数学试题含答案解析Word格式文档下载.docx

《新人教版九年级上期中数学试题含答案解析Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《新人教版九年级上期中数学试题含答案解析Word格式文档下载.docx(25页珍藏版)》请在冰豆网上搜索。

新人教版九年级上期中数学试题含答案解析Word格式文档下载.docx

DB=1:

2,BC=30cm,则FC的长为(  )

A.10cmB.20cmC.5cmD.6cm

6.x=1是关于x的一元二次方程x2+mx﹣5=0的一个根,则此方程的另一个根是(  )

A.5B.﹣5C.4D.﹣4

7.已知x1,x2是一元二次方程x2+2x﹣3=0的两根,则x1+x2,x1x2的值分别为(  )

A.﹣2,3B.2,3C.3,﹣2D.﹣2,﹣3

8.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,则EC=(  )

A.0.9cmB.1cmC.3.6cmD.0.2cm

9.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是(  )

A.100(1+x)=121B.100(1﹣x)=121C.100(1+x)2=121D.100(1﹣x)2=121

10.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE=

AC,连接CE、OE,连接AE,交OD于点F.若AB=2,∠ABC=60°

,则AE的长为(  )

D.

二、填空题(本大题共6小题,每小题4分,共24分)

11.方程(x﹣2)2=9的解是  .

12.边长为5cm的菱形,一条对角线长是6cm,则菱形的面积是  cm2.

13.如果线段a,b,c,d成比例,且a=5,b=6,c=3,则d=  .

14.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE,则∠AOB的度数为  .

15.x2﹣2x+3=0是关于x的一元二次方程,则a所满足的条件是  .

16.如图,已知正方形ABCD的对角线长为2

,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为  .

 

三、解答题

(一)(本大题共3小题,每小题6分,共18分)

17.解方程x(x﹣1)=2.

 

18.解方程:

x2﹣2x=2x+1.

19.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=

BC,连接DE,CF.求证:

四边形CEDF是平行四边形.

四、解答题

(二)(本大题共3小题,每小题7分,共21分)

20.(7分)已知:

如图,在菱形ABCD中,分别延长AB、AD到E、F,使得BE=DF,连接EC、FC.

求证:

EC=FC.

21.(7分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的减价措施,经调查发现,如果每件衬衫每降1元,商场平均每天可多售出5件.若商场平均每天要盈利1600元,每件衬衫应降价多少元?

这时应进货多少件?

22.(7分)一只箱子里共3个球,其中2个白球,1个红球,它们除颜色外均相同.

(1)从箱子中任意摸出一个球是白球的概率是多少?

(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图或列出表格.

五、解答题(三)(本大题共3小题,每小题9分,共27分)

23.(9分)如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B'

,折痕为CE.直线CE的关系式是y=﹣

x+8,与x轴相交于点F,且AE=3.

(1)求OC长度;

(2)求点B'

的坐标;

(3)求矩形ABCO的面积.

24.(9分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.

(1)求证:

△ABM∽△EFA;

(2)若AB=12,BM=5,求DE的长.

25.(9分)如图,矩形ABCD中,AB=16cm,BC=6cm,点P从点A出发沿AB向点B移动(不与点A、B重合),一直到达点B为止;

同时,点Q从点C出发沿CD向点D移动(不与点C、D重合).运动时间设为t秒.

(1)若点P、Q均以3cm/s的速度移动,则:

AP=  cm;

QC=  cm.(用含t的代数式表示)

(2)若点P为3cm/s的速度移动,点Q以2cm/s的速度移动,经过多长时间PD=PQ,使△DPQ为等腰三角形?

(3)若点P、Q均以3cm/s的速度移动,经过多长时间,四边形BPDQ为菱形?

九年级(上)期中数学试卷

参考答案与试题解析

【考点】解一元二次方程-因式分解法.

【分析】先移项,再分解因式,即可得出选项.

【解答】解:

x(x﹣3)=x﹣3,

x(x﹣3)﹣(x﹣3)=0,

(x﹣3(x﹣1)=0,

故选A.

【点评】本题考查了解一元二次方程的应用,能正确分解因式是解此题的关键.

【考点】列表法与树状图法.

【分析】首先利用列举法,列得所有等可能的结果,然后根据概率公式即可求得答案.

随机掷一枚均匀的硬币两次,

可能的结果有:

正正,正反,反正,反反,

∴两次正面都朝上的概率是

【点评】此题考查了列举法求概率的知识.解题的关键是注意不重不漏的列举出所有等可能的结果,用到的知识点为:

概率=所求情况数与总情况数之比.

【考点】比例线段.

【分析】分别计算各组数中最大与最小数的积和另外两数的积,然后根据比例线段的定义进行判断即可得出结论.

∵1×

4≠2×

3,

∴选项A不成比例;

4=2×

2,

∴选项B成比例;

∵3×

13≠5×

9,

∴选项C不成比例;

1≠2×

∴选项D不成比例

故选B.

【点评】本题考查了比例线段:

判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.

【考点】根的判别式.

【分析】根据方程x2+(m﹣2)x+m+1=0有两个相等的实数根可得△=0,即(m﹣2)2﹣4(m+1)=0,解方程即可得m的值.

∵方程x2+(m﹣2)x+m+1=0有两个相等的实数根,

∴△=0,即(m﹣2)2﹣4(m+1)=0,

解得:

m=0或m=8,

故选:

D.

【点评】此题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:

①当△>0时,方程有两个不相等的两个实数根;

②当△=0时,方程有两个相等的两个实数根;

③当△<0时,方程无实数根.

【考点】平行线分线段成比例.

【分析】先由DE∥BC,EF∥AB得出四边形BDEF是平行四边形,那么BF=DE.再由AD:

2,得出AD:

AB=1:

3.由DE∥BC,根据平行线分线段成比例定理得出DE:

BC=AD:

3,将BC=30cm代入求出DE的长,即可得FC的长.

∵DE∥BC,EF∥AB,

∴四边形BDEF是平行四边形,

∴BF=DE.

∵AD:

∴AD:

3.

∵DE∥BC,

∴DE:

3,即DE:

30=1:

∴DE=10,

∴BF=10.

故FC的长为20cm.

故选B

【点评】此题考查了平行线分线段成比例定理,平行四边形的判定与性质,比例的性质,难度不大,得出BF=DE,从而利用转化思想是解题的关键.

【考点】根与系数的关系.

【分析】由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.

设方程的另一根为x1,

由根据根与系数的关系可得:

x1•1=﹣5,

∴x1=﹣5.

B.

【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:

若方程两个为x1,x2,则x1+x2=﹣

,x1•x2=

【分析】直接根据根与系数的关系求解.

根据题意得x1+x2=

=﹣2;

x1x2=

﹣3.

故选D.

【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,关键是掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=

,x1x2=

【分析】根据平行线分线段成比例定理得到

=

,然后利用比例性质求EC的长.

,即

∴EC=0.9(cm).

【点评】本题考查了平行线分线段成比例:

三条平行线截两条直线,所得的对应线段成比例.

【考点】由实际问题抽象出一元二次方程.

【分析】设平均

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 电力水利

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1