完整版高考理科全国1卷数学Word文件下载.docx
《完整版高考理科全国1卷数学Word文件下载.docx》由会员分享,可在线阅读,更多相关《完整版高考理科全国1卷数学Word文件下载.docx(26页珍藏版)》请在冰豆网上搜索。
考试结束后,将试卷和答题卡一并交回。
一、选择题:
本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,则=
A.B.C.D.
【答案】C
【解析】
【分析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.
【详解】由题意得,,则
.故选C.
【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
2.设复数z满足,z在复平面内对应的点为(x,y),则
本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.
【详解】则.故选C.
【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.
3.已知,则
【答案】B
运用中间量比较,运用中间量比较
【详解】则.故选B.
【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是
A.165cmB.175cmC.185cmD.190cm
理解黄金分割比例的含义,应用比例式列方程求解.
【详解】设人体脖子下端至腿根的长为xcm,肚脐至腿根的长为ycm,则,得.又其腿长为105cm,头顶至脖子下端的长度为26cm,所以其身高约为42.07+5.15+105+26=178.22,接近175cm.故选B.
【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.
5.函数f(x)=在[—π,π]的图像大致为
A.B.
C.D.
【答案】D
先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.
【详解】由,得是奇函数,其图象关于原点对称.又.故选D.
【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是
【答案】A
本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.
【详解】由题知,每一爻有2中情况,一重卦的6爻有情况,其中6爻中恰有3个阳爻情况有,所以该重卦恰有3个阳爻的概率为=,故选A.
【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.
7.已知非零向量a,b满足=2,且(a–b)b,则a与b的夹角为
本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.
【详解】因为,所以=0,所以,所以=,所以与的夹角为,故选B.
【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.
8.如图是求的程序框图,图中空白框中应填入
A.A=B.A=C.A=D.A=
本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.
【详解】执行第1次,是,因为第一次应该计算=,=2,循环,执行第2次,,是,因为第二次应该计算=,=3,循环,执行第3次,,否,输出,故循环体为,故选A.
【点睛】秒杀速解认真观察计算式子的结构特点,可知循环体为.
9.记为等差数列的前n项和.已知,则
等差数列通项公式与前n项和公式.本题还可用排除,对B,,,排除B,对C,,排除C.对D,,排除D,故选A.
【详解】由题知,,解得,∴,故选A.
【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.
10.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为
可以运用下面方法求解:
如图,由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B.
【详解】如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得.
所求椭圆方程为,故选B.
【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.
11.关于函数有下述四个结论:
①f(x)是偶函数②f(x)在区间(,)单调递增
③f(x)在有4个零点④f(x)的最大值为2
其中所有正确结论的编号是
A.①②④B.②④C.①④D.①③
化简函数,研究它的性质从而得出正确答案.
【详解】为偶函数,故①正确.当时,,它在区间单调递减,故②错误.当时,,它有两个零点:
;
当时,,它有一个零点:
,故在有个零点:
,故③错误.当时,;
当时,,又为偶函数,的最大值为,故④正确.综上所述,①④正确,故选C.
【点睛】画出函数的图象,由图象可得①④正确,故选C.
12.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,PB的中点,∠CEF=90°
,则球O的体积为
先证得平面,再求得,从而得为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.
【详解】解法一:
为边长为2的等边三角形,为正三棱锥,
,又,分别为、中点,
,,又,平面,平面,,为正方体一部分,,即,故选D.
解法二:
设,分别为中点,
,且,为边长为2的等边三角形,
又
中余弦定理,作于,,
为中点,,,
,,又,两两垂直,,,,故选D.
【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.
二、填空题:
本题共4小题,每小题5分,共20分。
13.曲线在点处的切线方程为___________.
【答案】.
本题根据导数的几何意义,通过求导数,确定得到切线的斜率,利用直线方程的点斜式求得切线方程
【详解】详解:
所以,
所以,曲线在点处的切线方程为,即.
【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.
14.记Sn为等比数列{an}的前n项和.若,则S5=____________.
本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.
【详解】设等比数列的公比为,由已知,所以又,
所以所以.
【点睛】准确计算,是解答此类问题基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.
15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.
【答案】0.216.
本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.
【详解】前四场中有一场客场输,第五场赢时,甲队以获胜的概率是
前四场中有一场主场输,第五场赢时,甲队以获胜的概率是
综上所述,甲队以获胜的概率是
【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;
易错点之二是思维的全面性是否具备,要考虑甲队以获胜的两种情况;
易错点之三是是否能够准确计算.
16.已知双曲线C:
的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,,则C的离心率为____________.
【答案】2.
通过向量关系得到和,得到,结合双曲线的渐近线可得从而由可求离心率.
【详解】如图,
由得又得OA是三角形的中位线,即由,得则有,
又OA与OB都是渐近线,得又,得.又渐近线OB的斜率为,所以该双曲线的离心率为.
【点睛】本题考查平面向量结合双曲线的渐进线和离心率,渗透了逻辑推理、直观想象和数学运算素养.采取几何法,利用数形结合思想解题.
三、解答题:
共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:
共60分。
17.的内角A,B,C的对边分别为a,b,c,设.
(1)求A;
(2)若,求sinC.
【答案】
(1);
(2).
(1)利用正弦定理化简已知边角关系式可得:
,从而可整理出,根据可求得结果;
(2)利用正弦定理可得,利用、两角和差正弦公式可得关于和的方程,结合同角三角函数关系解方程可求得结果.
【详解】
(1)
即:
由正弦定理可得:
(2),由正弦定理得:
又,
整理可得: