度中考二次函数压轴题汇编Word下载.docx

上传人:b****1 文档编号:14059553 上传时间:2022-10-17 格式:DOCX 页数:162 大小:1.90MB
下载 相关 举报
度中考二次函数压轴题汇编Word下载.docx_第1页
第1页 / 共162页
度中考二次函数压轴题汇编Word下载.docx_第2页
第2页 / 共162页
度中考二次函数压轴题汇编Word下载.docx_第3页
第3页 / 共162页
度中考二次函数压轴题汇编Word下载.docx_第4页
第4页 / 共162页
度中考二次函数压轴题汇编Word下载.docx_第5页
第5页 / 共162页
点击查看更多>>
下载资源
资源描述

度中考二次函数压轴题汇编Word下载.docx

《度中考二次函数压轴题汇编Word下载.docx》由会员分享,可在线阅读,更多相关《度中考二次函数压轴题汇编Word下载.docx(162页珍藏版)》请在冰豆网上搜索。

度中考二次函数压轴题汇编Word下载.docx

(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;

(3)在

(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?

若存在,请求出点P的坐标;

4.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.

(1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?

最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

5.如图,点P为抛物线y=

x2上一动点.

(1)若抛物线y=

x2是由抛物线y=

(x+2)2﹣1通过图象平移得到的,请写出平移的过程;

(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.

①问题探究:

如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?

若存在,求出点F的坐标:

②问题解决:

如图二,若点Q的坐标为(1,5),求QP+PF的最小值.

6.已知直线y=x+3与x轴、y轴分别相交于A、B两点,抛物线y=x2+bx+c经过A、B两点,点M在线段OA上,从O点出发,向点A以每秒1个单位的速度匀速运动;

同时点N在线段AB上,从点A出发,向点B以每秒

个单位的速度匀速运动,连接MN,设运动时间为t秒

(1)求抛物线解析式;

(2)当t为何值时,△AMN为直角三角形;

(3)过N作NH∥y轴交抛物线于H,连接MH,是否存在点H使MH∥AB,若存在,求出点H的坐标,若不存在,请说明理由.

7.如图,抛物线经过原点O(0,0),点A(1,1),点

(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;

(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:

是否存在点M,使以点O,M,N为顶点的三角形与

(2)中的△AOC相似,若存在,求出点M的坐标;

若不存在,说明理由.

8.如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2).

(1)求a值并写出二次函数表达式;

(2)求b值;

(3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:

MB=MC;

(4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由.

9.如图,已知抛物线y=ax2+

x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.

(1)求抛物线的解折式和A、B两点的坐标;

(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;

若不存在,试说明理由;

(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.

10.已知:

如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点P运动到什么位置时,△PAB的面积有最大值?

(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?

若存在,求出点P的坐标;

11.如图,在平面直角坐标系中,抛物线y=

x2﹣

x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.

(1)求点A,B,C的坐标;

(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;

(3)在

(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?

若存在,求点M的坐标;

12.综合与探究

如图,抛物线y=

x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.

(1)求A,B,C三点的坐标;

(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;

若不存在,请说明理由;

(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.

13.已知抛物线y=ax2+bx+c过点A(0,2).

(1)若点(﹣

,0)也在该抛物线上,求a,b满足的关系式;

(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:

当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;

当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°

①求抛物线的解析式;

②若点P与点O关于点A对称,且O,M,N三点共线,求证:

PA平分∠MPN.

14.如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;

点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5).

(1)求出这条抛物线的表达式;

(2)当t=0时,求S△OBN的值;

(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时,S有最大值,最大值是多少?

15.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.

(1)求该抛物线所表示的二次函数的表达式;

(2)已知点F(0,

),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?

(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?

若存在,求出点Q的坐标;

16.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.

(1)求抛物线的解析式及点D的坐标;

(2)当△CMN是直角三角形时,求点M的坐标;

(3)试求出AM+AN的最小值.

17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.

(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.

(1)若点P的横坐标为﹣

,求△DPQ面积的最大值,并求此时点D的坐标;

(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?

若有,求出面积的最大值;

若没有,请说明理由.

18.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=

x与抛物线交于A、B两点,直线l为y=﹣1.

(2)在l上是否存在一点P,使PA+PB取得最小值?

(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.

19.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.

(Ⅰ)当抛物线经过点A时,求顶点P的坐标;

(Ⅱ)若点P在x轴下方,当∠AOP=45°

时,求抛物线的解析式;

(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°

时,求抛物线的解析式.

20.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).

(1)求函数y=ax2+bx+c的解析式;

(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;

(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的

若存在,求tan∠MAN的值;

21.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).

(1)求该抛物线的解析式;

(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;

(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?

若存在,求点P的坐标;

22.已知顶点为A抛物线

经过点

,点

(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;

(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.

23.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:

当0<x1<x2时,(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学研究 > 教学案例设计

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1