数字温度计课程设计论文Word格式文档下载.docx
《数字温度计课程设计论文Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《数字温度计课程设计论文Word格式文档下载.docx(21页珍藏版)》请在冰豆网上搜索。
第2章系统方案设计及论证3
2.1课题的基本内容3
2.2课题拟采用的研究途径和可行性分析3
2.3总体初步方案4
2.4方案分析4
第3章硬件电路设计11
第4章软件设计12
4.1仿真与调试12
4.2程序方案12
第5章总结13
参考文献14
致谢15
附录I仿真结果16
附录II实物图16
附录III主程序17
附录IVPCB仿真图21
第1章绪论
1.1课题的研究意义
温度的测量对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用,因此研究温度的测量方法和装置具有重要的意义。
近年来,温度检测领域发展迅速,并且随着数字技术的发展,温度的测控芯片也相应的登上历史的舞台,能够在工业、农业等各个领域中广泛使用。
温度的测量的关键之处是温度传感器,其往往决定着一个温度检测系统的性能。
传统的温度检测以热敏电阻和AD590为温度敏感元件。
热敏电阻虽成本低,但需信号处理电路,电路复杂,可靠性较低,测温准确度及抗干扰能力也有一定的不足。
近年来,传感器正处于传统型向新型传感器转型的发展阶段。
新型的温度传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它提高了抗干扰能力和可靠性,而且使系统结构更简洁,维护方便,缩小了空间。
单片机具有集成度高、功能强、体积小、价格低、抗干扰能力等优于一般CPU的优点,因此往往采用单片机作为数字控制器取代模拟控制器。
1.2国内外研究现状
温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。
成熟的温控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。
随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家、企业的研发中心,开展创新性研究,使我国仪表工业得到了迅速的发展。
目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版,记为:
IPTS-68(Rev-75)。
但由于IPTS-68温标存在一定的不足,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过了1990年国际温标ITS-90,ITS-90温标替代了IPTS-68。
1.2温度检测的发展背景在众多温度仪表中温度传感器是开发最早,也是现在应用最广的一类温度仪表,现在温度仪市场中温度传感器的份额已大大超过了其他的传感器。
从17世纪初人们开始利用温度进行测量。
温度检测在各个领域都具有广泛的应用,随着传感器技术、微电子技术、单片机技术的不断发展,为智能温度测控系统测控功能的完善、测控精度的提高和抗干扰能力的增强等提供了条件。
再则人们在温度检测的准确度、便捷、快速等方面有着越来越高的要求。
而传统的温度传感器已经不能满足人们的需求,所以新型的温度传感器将逐渐代替传统的温度传感器。
1.3水平和发展趋势
温度检测系统的发展趋势随着工业生产效率的不断提高,自动化水平与范围也不断扩大,因而对温度检测技术的要求也愈来愈高,现在工业上通用的温度检测范围为200-3000C,而今后要求能测量超高温与超低温。
尤其是液化气体的极低温度检测更为迫切,如10k以下的温度检测是当前重点研究课题。
温度检测技术将会由点测温发展到线、面,甚至立体的测量。
应用范围己经从土业领域延伸到环境保护、家用电器、汽车工业及航天工业领域。
利用以前的检测技术生产出适应于不同场合、不同工况要求的新型产品,以满足用户需要。
同时利用新的检测技术制造出新的产品。
对许多场合中的温度检测器有特殊要求,如防硫、防爆、耐磨等性能要求;
又如移动物体和高速旋转物体的测温、钢水的连续测温、火焰温度检测等。
温度仪表向数字化方向发展,其最大优点是直观、无读数误差、分辨率高、测量误差小,因而有广阔的销售市场,所以说数字温度计的发展前景是相当可观的。
第2章系统方案设计及论证
2.1课题的基本内容
数字温度计采用温度敏感元件也就是温度传感器(如铂电阻,热电偶,半导体,热敏电阻等),将温度的变化转换成电信号的变化,如电压和电流的变化,温度变化和电信号的变化有一定的关系,如线性关系,一定的曲线关系等,将电信号转换成数字信号。
如单片机或者PC机等,处理单元经过内部的软件计算将这个数字信号和温度联系起来,成为可以显示出来的温度数值,如25.0摄氏度,然后通过显示单元,如LED,LCD或者电脑屏幕等显示出来给人观察,这样就完成了数字温度计的基本测温功能。
该系统利用STC89C51芯片控制温度传感器DS18B20进行时温度检测并显示,能够实现快速检测环境温度。
可能遇到的问题及注意事项:
(1)较小的硬件开销需要相对复杂的软件进行补偿,由于DS18B20与微处理器间采用串行数据传送,因此,在对DS18B20进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。
(2)在DS18B20的有关资料中均未提及单总线上所挂DS18B20数量问题,容易使人误认为可以挂任意多个DS18B20,在实际应用中并非如此。
(3)连接DS18B20的总线电缆是有长度限制的。
(4)在DS18B20测温程序设计中,向DS18B20发出温度转换命令后,程序总要等待DS1820的返回信号,一旦某一个DS18B20接触不好或断线,当程序读该DS18B20时,将没有返回信号,程序进入死循环。
2.2课题拟采用的研究途径和可行性分析
采用数字温度芯片DS18B20测量温度,输出信号全数字化。
测温系统的结构就比较简单,体积也不大。
采用51单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。
既可以单独对多DS18B20控制工作,还可以与PC机通信上传数据,另外STC89C51在工业控制上也有着广泛的应用,编程技术及外围功能电路的配合使用都很成熟,因此可行性还是很高。
2.3总体初步方案
采用数字温度芯片DS18B20测量温度,输出信号全数字化。
便于单片机处理和控制,省去传统的测温方法的很多外围电路。
且该芯片的物理化学性质稳定,它温用作工业测温元件,此元件线性较好。
在0-100摄氏度时,最大线性偏差小于1摄氏度。
DS18B20的最大特点之一是采用了单总数的数据传输,由数字温度计DS18B20和微控制器STC89C51构成温度测量装置,它直接输出温度的数字信号,可直接和计算机连接。
这样温度系统的结构就比较简单,体积也不大。
采用51单片机控制软件编程的自由度大,而且体积小,硬件实现简单,安装方便。
该系统利用STC89C51芯片控制温度传感器DS18B20进行温度的实时检测并显示,能够实现快速测量环境温度。
硬件以微控制器为核心,外接时钟电路、复位电路、温度测量电路、LED显示电路组成。
硬件设计方案如图所示。
图2.1系统硬件框图
2.4方案分析
2.4.1微处理器
STC89C51是由深圳宏晶科技公司生产的与工业标准MCS-51指令集和输出管脚相兼容的单片机,是采用8051核的ISP在系统可编程芯片,最高工作时钟频率为80MHz,片内含8KBytes的可反复擦写1000次的Flash只读程序存储器,器件兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISPFlash存储单元,具有在系统可编程(ISP)特性。
STC89C51RC系列单片机是单时钟/机器周期(1T)的兼容8051内核单片机,是高速/低功耗的新一代8051单片机,全新的流水线/精简指令集结构,内部集成MAX810专用复位电路。
(1)STC89C51主要功能及PDIP封装
STC89C51主要功能如表1所示,其PDIP封装如图1所示。
主要功能特性
兼容MCS51指令系统
8K可反复擦写FlashROM
32个双向I/O口
256x8bit内部RAM
3个16位可编程定时/计数器中断
时钟频率0-24MHz
2个串行中断
可编程UART串行通道
2个外部中断源
共6个中断源
2个读写中断口线
3级加密位
低功耗空闲和掉电模式
软件设置睡眠和唤醒功能
表1:
STC89C51主要功能
(2)STC89C51引脚介绍
①主电源引脚(2根)
VCC(Pin40):
电源输入,接+5V电源
GND(Pin20):
接地线
②外接晶振引脚(2根)
XTAL1(Pin19):
片内振荡电路的输入端
XTAL2(Pin20):
片内振荡电路的输出端
③控制引脚(4根)
RST/VPP(Pin9):
复位引脚,引脚上出现2个机器周期的高电平将使单片机复位
ALE/PROG(Pin30):
地址锁存允许信号
PSEN(Pin29):
外部存储器读选通信号
EA/VPP(Pin31):
程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指令
④可编程输入/输出引脚(32根)
STC89C51单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32根
P0口(Pin39~Pin32):
8位双向I/O口线,名称为P0.0~P0.7
P1口(Pin1~Pin8):
8位准双向I/O口线,名称为P1.0~P1.7
P2口(Pin21~Pin28):
8位准双向I/O口线,名称为P2.0~P2.7
P3口(Pin10~Pin17):
8位准双向I/O口线,名称为P3.0~P3.7
图2.2STC89C51封装图
(3)单片机最小系统
当在STC89C51单片机的RST引脚引入高电平并保持2个机器周期时,单片机内部就执行复位操作,按键手动复位有电平方式和脉冲方式两种。
其中电平复位是通过RST端经过电阻与电源VCC接通而实现的。
最小系统如图2.3所示。
图2.3单片机最小系统电路
电路以STC89C51单片机最小系统为控制核心,测温电路由DS18B20提供,输入部分采用三个独立式按键S1、S2、S3。
数码管显示部分。
具体电路连接,详见附录一。
2.4.2DS18B20传感器介绍
(1)DS18B20概述
在现代检测技术中,传感器占据着不可动摇的重要位置。
主机对数据的处理能力已经相当的强,但是对现实世界中的模拟量却无能为力。
如果没有各种精确可靠的传感器对非电量和模拟信号进行检测并提供可靠的数据,那计算机也无法发挥他应有的作用。
传感器把非电量转换为电量,经过放