图像增强的毕业设计Word文档格式.docx

上传人:b****2 文档编号:13934189 上传时间:2022-10-15 格式:DOCX 页数:33 大小:1.23MB
下载 相关 举报
图像增强的毕业设计Word文档格式.docx_第1页
第1页 / 共33页
图像增强的毕业设计Word文档格式.docx_第2页
第2页 / 共33页
图像增强的毕业设计Word文档格式.docx_第3页
第3页 / 共33页
图像增强的毕业设计Word文档格式.docx_第4页
第4页 / 共33页
图像增强的毕业设计Word文档格式.docx_第5页
第5页 / 共33页
点击查看更多>>
下载资源
资源描述

图像增强的毕业设计Word文档格式.docx

《图像增强的毕业设计Word文档格式.docx》由会员分享,可在线阅读,更多相关《图像增强的毕业设计Word文档格式.docx(33页珍藏版)》请在冰豆网上搜索。

图像增强的毕业设计Word文档格式.docx

因此,如何对这些“降质”图像进行处理使其达到我们的要求已受到研究人员的高度重视。

传统的图像增强算法在改善图像的对比度和增强图像的细节的同时也放大了噪声,这是传统算法的缺点和不足之处。

图像增强对于物体的特征提取及其识别是非常重要的,主要有以下几个原因:

第一,图像增强的好坏直接关系到后续的图像处理(比如图像的分割,边缘检测,特征提取等方面)的好坏;

第二,图像增强是图像预处理中非常关键的一环,人们从传感器获得的图像不可能是完美无缺的,不是拍摄的光线不好造成背景黑细节不明显,就是夹杂着各种各样的噪声,这都降低了图像的质量,影响了人们的感官效果;

第三,传统的单尺度图像增强存在诸如增强图像的细节方面不突出,不能对图

景及意义,以及它的发展与现状,并详细介绍了几种传统单尺度图像增强算法的优缺点,最后介绍了本文所做的主要工作与安排。

第2章研究和分析了一些具有代表意义的传统单尺度图像增强的理论以及各种算法的原理,给出了利用这些算法做图像增强处理所得到的结果,分析总结了各个算法的优缺点,重点说明了这些算法在图像增强处理中的缺点,从而得出传统图像增强处理效果不理想的问题。

第3章针对传统单尺度图像增强方法处理效果不理想的缺点,本章重点介绍了多尺度对比增强算法理论,以及与单尺度图像增强相比它的优势。

首先介绍了图像多尺度对比图像增强的理论,接着对拉普拉斯金字塔函数,F/E处理分层增强系数,以及应用分层增强系数等进行了详细介绍,最后对这一章进行了小结。

第4章利用多尺度对比增强算法对所选图像进行处理,得到处理后的结果。

根据处理的结果说明了多尺度对比图像增强算法克服了传统单尺度增强算法的的缺点,并能够得到清晰、细节图像的理想图像。

最后对全文进行总结。

 

2传统图像增强理论简介

2.1传统图像增强概述

图像增强领域发展至今已经有很多算法,通常分为两大类:

空间域法和频率域法。

空间域法主要是在空间域中对图像像素灰度值直接进行运算处理,“空间域”是指图像平面本身,这类方法是以对图像的像素直接处理为基础的。

例如:

将包含某点的一个小区域内各点灰度值进行平均计算,用所得的平均值来代替该点的灰度值。

主要算法包括直方图修正、对比度增强和灰度级校正等。

“频域”处理技术是以修改图像的傅氏变换为基础的。

频率域法是在图像的某种变换域中(通常是频率域)对图像的变换值进行某种运算处理,然后变换回空间域。

例如:

先对图像进行傅立叶变换,然后对图像的频谱进行滤波等操作,最后把修正后的图像再次进行傅立叶反变换回到空间域中。

它是一种间接图像增强方法,主要包括中值滤波、低通滤波、高通滤波、小波变换等。

2.2传统图像增强的基本方法

2.2.1基本的灰度变换

实践证明,灰度变换技术是一种简便而有效的提高图像对比度的方法。

灰度变换也叫点运算,它不改变像素的位置,只改变像素的灰度。

设输入图像为,输出图像为,则灰度变换的数学表达式可表示为:

(式2.1)

这里为灰度变换的具体映射关系。

经常出现这样的情况,图像的灰度范围没有充分利用显示装置所允许的最大灰度范围从而导致图像的对比度太低,使一些细节不易被观察到。

比如:

摄影过程中如果曝光过度,就会出现这样的缺陷。

解决上述问题的最简单方法是进行灰度的线性变换,其数学表达式如下:

(式2.2)

对灰度做这样线性变换以后,把原始图像的灰度范围强行扩展为显示装置所允许的最大灰度范围,从而提高了整幅图像的对比度,原来观察不到的一些图像细节可能更加突出了,图2.1给出了这种线性灰度变换关系:

图2.1灰度范围的线性变换

如果在图像处理过程中,需要突出图像中某些灰度范围内的图像的细节,同时又允许适当损失另外灰度范围内的图像处理细节,可以采用线性灰度变换的另一种形式,即分段线性变换。

经过这种变换以后,可以使所关心的图像细节的灰度范围得以扩展,增强其对比度;

同时又使的所不关心的图像细节所处的灰度范围得以压缩,降低其对比度。

值得注意,这种分段线性变换,变换前后整幅图像总的灰度范围

不变的。

三段线性变换的数学表达式可写成:

=(式2.3)

式中,,

在实际的处理过程中,如果图像上灰度范围的两端区域上有噪声,比如感光胶片上有划伤和黑色感光颗粒,则可以用这种变换把灰度范围的两端区域压缩,使人眼视觉对噪声的感受不明显,而对有用细节所占据的灰度区域给予线性扩展,提高这部分的对比度。

如果图像上绝大部分的像素的灰度级集中在范围内,比较少的像素的灰度级超出此范围,则可用以下变换增强原图像上的范围的对比度:

=(式2.4)

图2.2表示了这种变换关系。

值得注意,扩展原图像灰度范围是以完全损失灰度小于和灰度大于的图像节为代价的。

这种变换与分段线性变换实际上都是非线性变换。

实际上,可能利用一些数学函数进行灰度变换,如平方、对数、指数等但这种变换必须满足以下条件,即:

如果,则需有,也就是说,灰度变换前后的灰度范围必须在显示装置所允许的最大灰度范围之内。

下面介绍以下常用的几种变换。

(1)图像反转:

对图像适用于求反是将原图灰度值反转,简单来说就是把黑的变百,白的变黑。

嵌入于图像暗色区域的白色或者灰色细节,特别当黑色面积占主导地位时,进行图像反转是比较理想的。

(2)对数变换:

使窄带低灰度输入图像值映射为宽带输出值,可以利用这种变换来扩展被压缩的高值图像中的暗像素,相对的是反对数变换的调整值;

对数函数有它重要的特征,就是它很大程度上压缩了图像像素值的动态范围;

(3)幂次变换:

幂次曲线中的部分值把输入窄带暗值映射到宽带输出值,相反,输入高值时也成立。

(2)对比度增强:

增强图像比度(Contraststretching)实际上是增强原图各部分之间的反差。

对比度增强分为线性和非线性对比度增强两种,线性是指将对比度较差的图像灰度线性扩展,常能显著改善图像的质量。

当用某些非线性函数如对数、指数函数作为映射函数时,可实现图像灰度的非线性变换。

对比度增强是图像增强中最普遍的增强方法。

当图像成像不足或过度曝光,图像记录设备范围太窄等,都会产生对比不足的问题,使图像的细节分辨不清。

为此需对每一像素的灰度级进行变换,扩大图像灰度的范围,达到图像增强目的。

2.2.2直方图处理

设图像的灰度级范围为,为此灰度范围内的任一灰度级,为这幅图像灰度级为的像素出现的频数,可以看出,是的函数,该函数的图形称为这幅图像的直方图。

一般横坐标表示灰度级,纵坐标表示具有该灰度级的像素的频数。

数字图像直方图显然是有一系列竖线条组成的图形,竖线条的高度代表了该灰度级在此幅图像出现的频数(或相对频数或频率),如下图2.2所示:

图2.2数字图像方图

为讨论方便,把灰度级归一化,即,假定对原始图像灰度级做以下灰度变换:

为使这种灰度变换具有实际意义,应满足如下条件:

(1)在区间内,为单值单调增加;

(2)在,对应有。

这里条件

(1)使变换后的灰度值保持从黑到白的次序,条件

(2)保证变换后的像素灰度级仍在允许的范围内。

由到的反变换可用下式表示:

这里对于变量也应满足条件

(1)和

(2)。

图2.3表示了满足条件

(1)和

(2)的变换。

图2.3具有实际意义的灰度变换

接下来简单介绍以下常见的两种基于直方图灰度变换:

(1)直方图均衡化:

是一种借助于直方图变换实现灰度映射从而达到图像增强目的的方法。

直方图表示数字图像中每一灰度级与其出现的频数(具有该灰度级的像素数目)间的统计关系。

直方图能给出图像整体分布描述,如图像的灰度范围、灰度级的大致分布情况等。

把原图像的直方图变换为各灰度值频率固定的直方图称为直方图均衡化。

(2)直方图规定化:

也是一种借助于直方图变换来增强图像方法,它通过将原始的直方图转换为期望得到的直方图,从而达到预先确定的增强效果。

也就是使处理后的图像具有指定的直方图。

2.2.3中值滤波

传统图像增强算法中,空域滤波是直接在图像空间借助摸板卷积来实现的增强方法。

根据不同的模板设计,空域滤波即可以实现对图像平滑功能。

在空域滤波时即可线性的组合模板运算的结果,也可非线性的利用模板运算的结果。

中值滤波的思想是对一个窗口内的所有像素灰度值进行排序,取排序结果的中间值作为原窗口中心点像素的灰度值。

这种滤波也就是平滑操作,对干扰噪声的效果较好。

中值滤波的关键在于选择合适的窗口大小和形状。

2.2.4小波变换图像增强

小波变换(WavelateTransform)是由法国科学家Molret在进行地震数据分析时提出的,在1986年Mallat将计算机视觉领域的多尺度分析思想引入到小波函数构造中,形成了统一的小波函数构造理论。

小波变换在图像分解与重建过程中,按需要改变有关小波参数,并且它的多分辨率分析具有良好的空间域和频率域局部化特性,对高频采用逐渐精细的时域或空域步长,可以聚焦到分析对象的任意细节,由此可增强图像中感兴趣的部分,国内外已有部分学者开始对此方法进行研究,到目前为止小波变化在图像压缩领域应用效果最好。

2.3传统图像增强的特点

2.3.1直方图均衡

(1)直方图表示数字图像中每一灰度级与其出现的频数(具有该灰度级的像素数目)间的统计关系。

直方图均衡效果如下图2.4所示:

图2.4直方图均衡化和原图的比较

2.3.2对比度增强

当用某些非线性函数如对数、指数函数作为

映射函数时,可实现图像灰度的非线性变换。

对比增强效果见下图2.5所示:

图2.5对比增强后与原图的比较

2.3.3中值滤波

中值滤波是1971年由J.W.Jukey首先提出并应用于一维信号处理技术中,后来被二维图像信号处理技术所引用。

中值滤波的思想是对一个窗口内的所有像素灰度值进行排序,取排序结果的中间值作为原窗口中心点像素的灰度值,这种滤波也就是平滑操作,对干扰噪声的效果较好。

中值滤波的关键在于选择合适的窗口大小和形状,但一般很难事先确定窗口的尺寸,通常是从小到大进行多次尝试。

后来在1984年Brownigg提出的加权中值滤波以及以此为基础衍生出的一些改进方法能够更为有效地保持图像的细节,进一步改善滤波效果。

如对含有椒盐噪声的图像行中值滤波,中值滤波的效果见下图2.6所示:

图2.6含噪图与中值滤波后的图像比较

2.3.4小波变换图像增强

小波变换(WaveletTransform)是由法国科学家Morlet

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1