七年级数学上册整式计算题专项练习含答案Word文档格式.docx
《七年级数学上册整式计算题专项练习含答案Word文档格式.docx》由会员分享,可在线阅读,更多相关《七年级数学上册整式计算题专项练习含答案Word文档格式.docx(15页珍藏版)》请在冰豆网上搜索。
20.化简求值:
,其中
。
21.化简求值
其中
22.5(x-1)(x+3)-2(x-5)(x-2)23.(a-b)(a2+ab+b2)
24.(3y+2)(y-4)-3(y-2)(y-3)25.a(b-c)+b(c-a)+c(a-b)
26.(-2mn2)2-4mn3(mn+1)27.3xy(-2x)3·
(-
y2)2
28.(-x-2)(x+2)29.5×
108·
(3×
102)
30.(x-3y)(x+3y)-(x-3y)231.(a+b-c)(a-b-c)
答案
2.
3.
4.
7.
9.
10.
11.
13.
14.
15.
16.原式=(1000-1)
(1000+1)17.原式=(99+1)
(99-1)
=1000000-1=100
98
=999999=9800
18.原式=(900-2)219.原式=20092-(2009+1)(2009-1)
=10000-400+4=20092-20092+1
=9604=1
20.原式=
,当
时,原式=
21.原式=
,当
,
22.
23.
24.
25.0
26.
27.
28.
29.
30.
31.
2014年北师大七年级数学上册《整式及其加减》计算题专项练习一
一.解答题(共12小题)
1.计算题
①12﹣(﹣8)+(﹣7)﹣15;
②﹣12+2×
(﹣5)﹣(﹣3)3÷
;
③(2x﹣3y)+(5x+4y);
④(5a2+2a﹣1)﹣4(3﹣8a+2a2).
2.
(1)计算:
4+(﹣2)2×
2﹣(﹣36)÷
4;
(2)化简:
3(3a﹣2b)﹣2(a﹣3b).
3.计算:
(1)7x+4(x2﹣2)﹣2(2x2﹣x+3);
(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)];
(3)(3mn﹣5m2)﹣(3m2﹣5mn);
(4)2a+2(a+1)﹣3(a﹣1).
4.化简
(1)2(2a2+9b)+3(﹣5a2﹣4b)
(2)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)
5.(2009•柳州)先化简,再求值:
3(x﹣1)﹣(x﹣5),其中x=2.
6.已知x=5,y=3,求代数式3(x+y)+4(x+y)﹣6(x+y)的值.
7.已知A=x2﹣3y2,B=x2﹣y2,求解2A﹣B.
8.若已知M=x2+3x﹣5,N=3x2+5,并且6M=2N﹣4,求x.
9.已知A=5a2﹣2ab,B=﹣4a2+4ab,求:
(1)A+B;
(2)2A﹣B;
(3)先化简,再求值:
3(A+B)﹣2(2A﹣B),其中A=﹣2,B=1.
10.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.
(1)求a﹣(b﹣c)的值;
(2)当x=
时,求a﹣(b﹣c)的值.
11.化简求值:
已知a、b满足:
|a﹣2|+(b+1)2=0,求代数式2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)的值.
12.已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.
参考答案与试题解析
考点:
整式的加减;
有理数的混合运算.菁优网版权所有
专题:
计算题.
分析:
(1)直接进行有理数的加减即可得出答案.
(2)先进行幂的运算,然后根据先乘除后加减的法则进行计算.
(3)先去括号,然后合并同类项即可得出结果.
(4)先去括号,然后合并同类项即可得出结果.
解答:
解:
①原式=12+8﹣7﹣15=﹣2;
②原式=﹣1﹣10+27÷
=﹣11+81=70;
③原式=2x﹣3y+5x+4y=7x+y;
④原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13.
点评:
本题考查了整式的加减及有理数的混合运算,属于基础题,解答本题的关键熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.
(2)化简:
(1)按照有理数混合运算的顺序,先乘方后乘除最后算加减;
(2)运用整式的加减运算顺序计算:
先去括号,再合并同类项.
(1)原式=4+4×
2﹣(﹣9)
=4+8+9
=17;
(2)原式=9a﹣6b﹣2a+6b
=(9﹣2)a+(﹣6+6)b
=7a.
在混合运算中要特别注意运算顺序:
先三级,后二级,再一级;
熟记去括号法则:
﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣;
及熟练运用合并同类项的法则:
字母和字母的指数不变,只把系数相加减.
(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)];
(4)2a+2(a+1)﹣3(a﹣1).
整式的加减.菁优网版权所有
(1)先去括号,再合并同类项即可;
(2)先去括号,再合并同类项即可;
(3)先去括号,再合并同类项即可;
(4)先去括号,再合并同类项即可.
(1)7x+4(x2﹣2)﹣2(2x2﹣x+3)
=7x+4x2﹣8﹣4x2+2x﹣6
=9x﹣14;
(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)]
=4ab﹣3b2﹣[a2+b2﹣a2+b2]
=4ab﹣3b2﹣2b2
=4ab﹣5b2;
(3)(3mn﹣5m2)﹣(3m2﹣5mn)
=3mn﹣5m2﹣3m2+5mn
=8mn﹣8m2;
(4)2a+2(a+1)﹣3(a﹣1)
=2a+2a+2﹣3a+3
=a+5.
本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.
(1)2(2a2+9b)+3(﹣5a2﹣4b)
(2)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)
(1)原式利用去括号法则去括号后,合并同类项即可得到结果;
(2)原式利用去括号法则去括号后,合并同类项即可得到结果.
(1)原式=4a2+18b﹣15a2﹣12b
=﹣11a2+6b;
(2)原式=3x3+6x2﹣3﹣3x3﹣4x2+2
=2x2﹣1.
此题考查了整式的加减,涉及的知识有:
去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.
整式的加减—化简求值.菁优网版权所有
本题应对方程去括号,合并同类项,将整式化为最简式,然后把x的值代入即可.
原式=3x﹣3﹣x+5=2x+2,
当x=2时,原式=2×
2+2=6.
本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.
先把x+y当作一个整体来合并同类项,再代入求出即可.
∵x=5,y=3,
∴3(x+y)+4(x+y)﹣6(x+y)
=x+y
=5+3
=8.
本题考查了整式的加减的应用,主要考查学生的计算能力,用了整体思想.
直接把A、B代入式子,进一步去括号,合并得出答案即可.
2A﹣B=2(x2﹣3y2)﹣(x2﹣y2)
=2x2﹣6y2﹣x2+y2
=x2﹣5y2.
此题考查整式的加减混合运算,掌握去括号法则和运算的方法是解决问题的关键.
解一元一次方程.菁优网版权所有
把M与N代入计算即可求出x的值.
∵M=x2+3x﹣5,N=3x2+5,
∴代入得:
6x2+18x﹣30=6x2+10﹣4,
解得:
x=2.
此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
(1)把A与B代入A+B中计算即可得到结果;
(2)把A与B代入2A﹣B中计算即可得到结果;
(3)原式去括号合并得到最简结果,把A与B的值代入计算即可求出值.
(1)∵A=5a2﹣2ab,B=﹣4a2+4ab,
∴A+B=5a2﹣2ab﹣4a2+4ab=a2+2ab;
(2)∵A=5a2﹣2ab,B=﹣4a2+4ab,
∴2A﹣B=10a2﹣4ab+4a2﹣4ab=14a2﹣8ab;
(3)原式=3A+3B﹣4A+2B=﹣A+5B,
把A=﹣2,B=1代入得:
原式=2+5=7.
代数式求值.菁优网版权所有
(1)把a,b,c代入a﹣(b﹣c)中计算即可得到结果;
(2)把x的值代入
(1)的结果计算即可得到结果.
(1)把a=14x﹣6,b=﹣7x+3,c=21x﹣1代入得:
a﹣(b﹣c)=a﹣b+c=14x﹣6+7x﹣3+21x﹣1=42x﹣10;
(2)把x=
代入得:
原式=42×
﹣10=10.5﹣10=0.5.
此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.
|a﹣2|+(b+1)2=0,求代数