小学数学奥数基础教程(四年级)--28Word格式.doc
《小学数学奥数基础教程(四年级)--28Word格式.doc》由会员分享,可在线阅读,更多相关《小学数学奥数基础教程(四年级)--28Word格式.doc(4页珍藏版)》请在冰豆网上搜索。
回答是“4”是从最“有利”的情况考虑的,但为了“保证至少有4个小球颜色相同”,就要从最“不利”的情况考虑。
如果最不利的情况都满足题目要求,那么其它情况必然也能满足题目要求。
“最不利”的情况是什么呢?
那就是我们摸出3个红球、3个黄球和3个蓝球,此时三种颜色的球都是3个,却无4个球同色。
这样摸出的9个球是“最不利”的情形。
这时再摸出一个球,无论是红、黄或蓝色,都能保证有4个小球颜色相同。
所以回答应是最少摸出10个球。
由例1看出,最不利原则就是从“极端糟糕”的情况考虑问题。
如果例1的问题是“最少摸出几个球就可能有4个球颜色相同”,那么我们就可以根据最有利的情况回答“4个”。
现在的问题是“要保证有4个小球的颜色相同”,这“保证”二字就要求我们必须从最不利的情况分析问题。
例2口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共18个。
其中红球3个、黄球5个、蓝球10个。
现在一次从中任意取出n个,为保证这n个小球至少有5个同色,n的最小值是多少?
与例1类似,也要从“最不利”的情况考虑。
最不利的情况是取了3个红球、4个黄球和4个蓝球,共11个。
此时袋中只剩下黄球和蓝球,所以再取一个球,无论是黄球还是蓝球,都可以保证有5个球颜色相同。
因此所求的最小值是12。
例3一排椅子只有15个座位,部分座位已有人就座,乐乐来后一看,他无论坐在哪个座位,都将与已就座的人相邻。
在乐乐之前已就座的最少有几人?
将15个座位顺次编为1~15号。
如果2号位、5号位已有人就座,那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。
根据这一想法,让2号位、5号位、8号位、11号位、14号位都有人就座,也就是说,预先让这5个座位有人就座,那么乐乐无论坐在哪个座位,必将与已就座的人相邻。
因此所求的答案为5人。
例4一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?
从最不利的情形考虑。
用10把钥匙依次去试第一把锁,最不利的情况是试验了9次,前8次都没打开,第9次无论打开或没打开,都能确定与这把锁相匹配的钥匙(若没打开,则第10把钥匙与这把锁相匹配)。
同理,第二把锁试验8次……第九把锁只需试验1次,第十把锁不用再试(为什么?
)。
共要试验
9+8+7+…+2+1=45(次)。
所以,最少试验45次就一定能使全部的钥匙和锁相匹配。
例5在一副扑克牌中,最少要取出多少张,才能保证取出的牌中四种花色都有?
一副扑克牌有大、小王牌各1张,“红桃”、“黑桃”、“方块”、“梅花”四种花色各13张,共计有54张牌。
最不利的情形是:
取出四种花色中的三种花色的牌各13张,再加上2张王牌。
这41张牌中没有四种花色。
剩下的正好是另一种花色的13张牌,再抽1张,四种花色都有了。
因此最少要拿出42张牌,才能保证四种花色都有。
例6若干箱货物总重19.5吨,每箱重量不超过353千克,今有载重量为1.5吨的汽车,至少需要多少辆,才能确保这批货物一次全部运走?
汽车的载重量是1.5吨。
如果每箱的重量是300千克(或1500的小于353的约数),那么每辆汽车都是满载,即运了1.5吨货物。
这是最有利的情况,此时需要汽车
19.5÷
1.5=13(辆)。
如果装箱的情况不能使汽车满载,那么13辆汽车就不能把这批货物一次运走。
为了确保把这批货物一次运走,需要从最不利的装箱情况来考虑。
最不利的情况就是使每辆车运得尽量少,即空载最多。
因为353×
4<1500,所以每辆车至少装4箱。
每箱300千克,每车能装5箱。
如果每箱比300千克略多一点,比如301千克,那么每车就只能装4箱了。
此时,每车载重
301×
4=1204(千克),
空载1500-1204=296(千克)。
注意,这就是前面所说的“最不利的情况”。
19500÷
1204=16……236,也就是说,19.5吨货物按最不利的情况,装16车后余236千克,因为每辆车空载296千克,所以余下的236千克可以装在任意一辆车中。
综上所述,16辆车可确保将这批货物一次运走。
练习28
1.口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。
一次最少摸出几个,才能保证至少有5个小球颜色相同?
2.口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共20个,其中红球4个、黄球6个、蓝球10个。
一次最少取出几个,才能保证至少有6个小球颜色相同?
3.一排椅子共有18个座位,部分座位已有人就座,乐乐来后一看,他无论坐在哪个座位,都将与已经就座的人相邻。
4.一张圆桌有12个座位,部分座位已有人就座,乐乐来后一看,他无论坐在哪个座位,都将与已经就座的人相邻。
5.口袋里有三种颜色的筷子各10根。
(1)至少取几根才能保证三种颜色的筷子都取到?
(2)至少取几根才能保证有颜色不同的两双筷子?
(3)至少取几根才能保证有颜色相同的两双筷子?
6.一个布袋里有红色、黄色、黑色袜子各20只。
最少要拿多少只袜子才能保证其中至少有2双颜色不相同的袜子?
7.一把钥匙只能开一把锁,现有10把锁和其中的9把钥匙,要保证这9把钥匙都配上锁,至少需要试验多少次?
8.10吨货物分装若干箱,每只箱子重量不超过1吨。
为了确保将这批货物一次运走,最少要准备几辆载重量为3吨的汽车?
答案与提示练习
1.13个。
2.15个。
3.6人。
4.4人。
5.
(1)21根;
(2)13根;
(3)10根。
6.23只。
7.45次。
提示:
第一把钥匙试验了9把锁,第二把钥匙试验了8把锁……第九把钥匙试验了1把锁。
8.5辆。
提示:
因为每辆车至少能运3箱货物,3÷
4=0.75(吨),所以每箱货物略重于0.75吨,可使空载较大。
假设每箱装0.76吨,由于10=0.76×
13+0.12,则可将这批货物分装在13只0.76吨和1只0.12吨的箱子中。
因为每辆车只能装3只0.76吨的箱子,所以至少要5辆车。