NDVI与气象因子的相关关系分析报告Word下载.docx

上传人:b****1 文档编号:13780611 上传时间:2022-10-13 格式:DOCX 页数:13 大小:92.46KB
下载 相关 举报
NDVI与气象因子的相关关系分析报告Word下载.docx_第1页
第1页 / 共13页
NDVI与气象因子的相关关系分析报告Word下载.docx_第2页
第2页 / 共13页
NDVI与气象因子的相关关系分析报告Word下载.docx_第3页
第3页 / 共13页
NDVI与气象因子的相关关系分析报告Word下载.docx_第4页
第4页 / 共13页
NDVI与气象因子的相关关系分析报告Word下载.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

NDVI与气象因子的相关关系分析报告Word下载.docx

《NDVI与气象因子的相关关系分析报告Word下载.docx》由会员分享,可在线阅读,更多相关《NDVI与气象因子的相关关系分析报告Word下载.docx(13页珍藏版)》请在冰豆网上搜索。

NDVI与气象因子的相关关系分析报告Word下载.docx

xxxx班

学号

xxx

成绩

一、预习部分

1.实验目的

2.实验基本原理

3.主要仪器设备(含必要的元器件、工具)

利用已有的MODIS影像数据计算归一化植被指数NDVI,并利用地面气象站同步观测数据提取积温、日照等气象因子,建立起NDVI与气象因子的经验模型,分析二者之间的相关性,并通过在生物化学方面对NDVI与气象因子之间的关系进行解释分析,实现在植被生理方面解释它们之间的关系,从而希望之后能够利用地面气象站的气象数据预测NDVI并实现估产等方面的应用。

也希望通过这次实习,学会如何合理科学地建立经验模型,并在建立模型后实现符合实际逻辑认识的解释,这是很重要的。

根据植被特有的光谱特征,它在可见光部分由于色素的存在,会有较强的吸收,而在红边波段处快速抬升。

利用这一特征可以建立起植被指数来探测植被像元并且以植被指数可以求取许多植被相关参数,如植被覆盖率、叶面积指数,甚至用于植被估产等。

归一化植被指数NDVI就是以此为基础提出的,并在许多领域广泛利用。

NDVI值分布在-1到1之间,NDVI>

0时可确定植被的存在,且NDVI越大,植被覆盖率越高,但在高植被覆盖率地区,NDVI就容易饱和了。

NDVI的计算公式如下:

NDVI=(NIR-Red)/(NIR+Red)

而植被的生理状态常常会影响NDVI,气象因子又会影响植被的生理状态,所以可以建立起气象因子与NDVI的关系模型。

一般在遥感应用模型中可以建立的模型类型包括经验模型、物理模型和半经验半物理模型。

此处气象因子与NDVI的关系我们建立的时经验模型,即通过分析两类数据之间的相关性选择合适的关系式建立模型。

经验模型的建立,若希望它能够有意义,样本点至少要有30个,还应有相应的验证样本,但此处受数据限制,样本不足,只能建立模型,无法完成验证。

模型的相关性应在一定阈值以上才能证明二者之间相关。

最后在模型建立后还应从实际植被生理方面对模型有所解释,能够找到与实际相符的关系才认为模型可以接受。

3.主要仪器设备

本次实习中利用的数据包括随州2003年和2004年MODIS250m分辨率的红波段与近红外影像,随州03年04年地面站每日温度、日照数据。

因为温度对植被的作用是累加的,所以需要利用每日温度求积温,积温定义为温度在0以上的每日温度的累加值,同理,日照有延时效应,所以可以统计一个5日累计日照时间、10日累计日照时间和15日累计日照时间。

实习中使用的软件包括ERDAS、Excel和Matlab。

利用ERDAS可以计算MODIS影像的平均NDVI值,Excel求取积温、累计日照时间,Matlab用于拟合气象因子与NDVI的关系,并求出R²

和RMSE判断拟合效果与数据相关性。

二、实验操作部分

1.实验数据、表格及数据处理

2.实验操作过程(可用图表示)

3.结论

1.实验数据、表格和数据处理

实验区域我们组分到的是随州2003年和2004年的MODIS影像和对应的地面站气象数据,包括每日气温和每日日照时间。

由于我们需要建立的是NDVI与气象因子之间的关系,所以需要先利用MODIS影像的近红外和红波段求出NDVI,这里应该要对数据进行预处理,包括去除条带噪声,Bow-tie校正,太阳天顶角订正和几何校正等,但现有的数据已经做好预处理了,可以直接用就好。

计算NDVI是利用ERDAS里的modeler模块,注意分母为0的情况要去除。

而气象数据是每日温度和每日日照时间,考虑气象因子的延时效应,需要计算累计值,这里我是用Excel直接进行的统计,注意最后求出的结果都要乘以0.1。

在求出NDVI与积温、累计日照时间后,利用Matlab的CFTool模块进行相关关系拟合并计算R²

和RMSE,判断评价拟合效果。

2.实验操作过程

2.1MODIS影像的NDVI计算

得到的MODIS影像已经经过数据预处理步骤,可直接利用ModelerMaker建立计算NDVI的模型,在建模时需要注意分母有可能为0的情况,所以添加判断语句:

NDVI分母为0时,NDVI直接取值为0。

又因为最后用于曲线拟合的NDVI值是整幅影像的NDVI值取平均,而NDVI值小于0处一般认为不是植被,所以我又增加了一个判断,NDVI值<0的像元不进入平均计算,这样可得到两种平均NDVI值,一为整幅图的NDVI取平均,另一个则是去除NDVI小于0的像元后再取平均得到的平均NDVI值。

将对应日期的NDVI导入Excel中,便于之后的关系拟合。

2.2气象数据的积温、累计日照时间求解

得到的地面站气象数据是每日的气温与每日日照时间,但考虑到温度和日照对植被的影响并不是立即见效的,总有延时效应,所以需要对温度和日照时间进行累加,计算积温和5日、10日和15日的累计日照时间,这些累加都是利用Excel完成的。

2.3Matlab拟合NDVI与气象因子关系

取出Excel中影像对应的NDVI与积温、累计日照时间值,导入Matlab中。

利用Matlab中曲线拟合的cftool模块,导入数据,选择拟合关系的形式,比如线性的、二次曲线、三次曲线等,即可实现曲线拟合,并计算出R²

和RMSE用于拟合效果评价。

注意有一些气象数据比如03年12月的两个,因为没有对应的影像数据需要删除。

利用Matlab拟合积温、累积日照时间与NDVI的关系,由于经验模型的建立需要大量的样本,至少30个左右,而可以利用的03年和04年的影像数据加起来才能达到这一量级,所以在之后的拟合中,将03和04年的数据一起加入拟合,就不按年份分开来做了,否则可能会出现因样本数不足而使拟合效果不可信的情况。

3.1NDVI与积温的相关关系拟合

以累积温度作为x轴,NDVI作为y轴,以二次曲线对数据进行拟合,效果如下:

图1累计温度与NDVI的关系

Goodnessoffit:

SSE:

0.08114

R-square:

0.8449

AdjustedR-square:

0.8339

RMSE:

0.05383

可以看到方程的可决系数R²

值为0.8449,而可决系数越趋近1,说明模型对数据的拟合效果越好。

均方根误差RMSE为0.05383,RMSE越小,说明数据的离散程度越小。

所以可以看到NDVI与积温之间确实有相关性,并且二者呈二次曲线关系,即在一定围,温度越高,NDVI也随之增加,但到一定阈值后,积温越大,NDVI反而减小。

这与实际情况也是相符的。

在植物生长过程中,温度慢慢增加,利于植被的发芽长叶和叶绿素的合成,由此NDVI值也越发增大,但温度太高,超过植被生长的最高温度时,植被就有可能缺水甚至死亡,这样NDVI就会随温度增加反而下降。

这是符合植物生理过程的,也说明这个模型可以接受。

3.2NDVI与累积日照时间的相关关系

累计日照时间可以用3种不同时长累积,包括5日累计日照时间、10日累积日照时间和15日累积日照时间。

3.2.1NDVI与5日累积日照时间的相关关系

以5日累计日照时间为x轴,NDVI为y轴,拟合效果如下:

图25日累积日照时间与NDVI拟合

Goodnessoffit:

SSE:

0.4451

0.1495

0.1201

0.1239

可以看到5日累积日照与NDVI之间的相关性并不明显,从散点图来看几乎可以断言二者仅有微弱的相关性。

而通过结合实际分析,日照时间确实应该与NDVI相关,所以,可能是因为数据太少,无法排除误差等因素造成的影响。

为了验证去除了小于0的NDVI平均值是否能与累计日照时间有更好的相关性,将去除负值后的NDVI值也导入Matlab进行曲线拟合,效果如下:

图35日累计日照时间与去除负值后的NDVI平均值的相关关系

0.4429

0.1499

0.1206

0.1236

可以看到点分布还是十分离散的,拟合效果还是不如人意。

但仅从R²

和RMSE等定量的评价指标来看,去除负值后的NDVI平均值衡量模型拟合效果的可决系数R²

增加了0.0004,反映数据离散程度的RMSE减少了0.0003,还是在向好的方向提升的。

因为NDVI为负值的像元理论上认为它不属于植被,虽然MODIS一个像元对应的地面面积很大是250米x250米,很容易出现混合像元,但还是直接将负的NDVI认为非植被去除了,这样确实应该对拟合效果有所提高,但又因为对实际地表情况也不清楚,所以提升效果不佳也是可能的。

3.2.2NDVI与10日累积日照时间的相关关系

以10日累计日照时间为x轴,NDVI为y轴,拟合效果如下:

图410日累计日照时间与NDVI的相关关系

0.5053

0.03441

0.001118

0.132

由图中样本点的分布可以看出,基本没有相关性。

从定量指标R²

和RMSE来看,二者确实基本可以判断为无明显相关性。

而因为结合实际情况,日照有利于植被生长与叶绿素的合成,理论上会越长的日照会使NDVI增加,所以选择利用一次曲线进行拟合,而效果类似5日日照时间的累计值,分析原因有可能是数据的问题,但由于样本数不足,无法对其中的噪声、误差进行排除,所以拟合效果不好。

类似的,希望分析去除负值后的平均NDVI值与10日日照累计时长的关系,看是否能对结果有所优化,二者的拟合效果如下:

图510日累计日照时间与去除负值后的NDVI相关关系

0.5033

0.03409

0.0007806

0.1317

由散点图分布看,效果并无明显改善;

而从定量指标分析来看,效果不仅没有改善,反而愈发差了。

说明由于MODIS像元分辨率太低,混合像元情况很多,复杂的地面情况导致仅以NDVI值为负判断植被是否存在是不可取的,所以拟合效果反而变差了。

3.2.3NDVI与15日累积日照时间的相关关系

以15日累计日照时间为x轴,NDVI为y轴,拟合效果如下:

图615日累计日照时间与NDVI的相关关系

0.4685

0.1048

0.0739

0.1271

由散点图来看,15日累计日照时间与NDVI的相关性优于10日的,但还是相关性很低。

由定量评价指标来看,15日日照时长累计值与NDVI仅微弱相关且数据离散。

分析去除负值后的NDVI平均值与15日累计日照时间的相关性,拟合效果如下:

图715日累计日照时间与去除负值后的NDVI的相关关系

0.4668

R-square:

0.1042

AdjustedR-square:

0.07328

RMSE:

0.1269

可以看到去除负值前后的NDVI平均值与15日累计日照时间的拟合效果类似,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 农学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1