苏教版小学数学五年级上册全册教案Word文档格式.docx
《苏教版小学数学五年级上册全册教案Word文档格式.docx》由会员分享,可在线阅读,更多相关《苏教版小学数学五年级上册全册教案Word文档格式.docx(86页珍藏版)》请在冰豆网上搜索。
老师收集了某天四个城市的最低温度资料,并用温度计显示。
2、教学用正负数和0表示几个城市某一天的最低气温。
出示图片:
香港19摄氏度
师:
那一天香港的最低气温是多少度?
你是怎么看出来的?
老师介绍温度计的看法。
上海3摄氏度
上海的气温是多少摄氏度?
南京0摄氏度
南京呢?
和上海比,南京的气温怎样?
北京零下3摄氏度
和上海比,北京的气温怎么样?
同时出示上海、南京、北京三地的气温图片。
上海和北京的气温一样吗?
在数学上怎样区分零上3摄氏度和零下3摄氏度的呢?
3、介绍正负数的读写法。
规定零上3摄氏度记作+3摄氏度或3摄氏度,规定零下3摄氏度记作-3摄氏度。
教学正数和负数的读写法
“+3”读作正三,再写的时候,只要在3前面加一个“+”——正号,“+3”也可以写成3。
“-3”读作负三,书写时,只要先写“-”——负号,再写3。
(教师板书)
现在,我们可以说那一天上海的气温是+3℃,北京的气温是-3℃
4、练一练
(1)选择合适的数表示各地的气温
你还会用这样的方法来记录温度吗?
看屏幕上的温度计,选择适当的卡片举起来。
(卡片上分别写有+12℃、-12℃、30℃、+30℃、-30℃)
哈尔滨:
零下12摄氏度,漠河:
零下30摄氏度,海口:
零上30摄氏度
对于海口学生有两种不同的选择:
+30℃和30℃
对于这两种选择你有什么看法?
(2)小小气象记录员
我们一起来当气象记录员,一边听天气预报,一边记录气温。
课件演示:
赤道零上40摄氏度,北极零下26摄氏度,南极零下40摄氏度
二、感知生活中的正数和负数。
1、认识海拔高度的表示方法
从上面的资料中可以看出,不同的地区有温差,在我国同一地区同一天也有很大的温差。
出示教科书上的“你知道吗”
新疆吐鲁番是我国还把最低的地区,你知道它的海拔高度是多少?
出示海拔高度图
从图中你知道了什么?
以海平面为标准,珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。
你能用今天学的知识表示这两个地方的海拔高度吗?
小结:
用正负数还可以区分海平面以上的高度和海平面以下的高度。
2、练一练
(1)用正数或者负数表示下面各地的海拔高度。
(出示海拔高度图)
中国最大的咸水湖——青海湖的海拔高度高于海平面3193千米。
世界最低最咸的湖——死海低于海平面400米。
世界海拔高度最低的国家——马尔代夫比海平面高1米。
(2)说说下面的海拔高度是高于海平面还是低于海平面?
里海是世界上最大的湖,水面的海拔高度是-28米。
太平洋的马里亚纳海沟是世界上最深的海沟,最深处海拔-11034米
三、描述正数和负数的意义
出示:
+3,-3,40,-12,-400,-155,+8848
你能将这些数分分类吗?
按什么分?
分成几类?
小组讨论。
象+3,40,+8848这样的数都是正数,像-3,-12,-400,-155这样的数都是负数。
从温度计上观察,0摄氏度以上的数都是正数,0摄氏度以下的数都是负数。
海平面以上的数都是正数,海平面以下的数都是负数。
0是正数和负数的分界线,0既不是正数也不是负数。
正数大于0,负数小于0。
练一练
1、先读一读,再把数填入适当的框内。
-5,+26,9,-40,-120,+203
正数负数
2、每人写出5个正数和5个负数。
读出所写的数,并判断写的是否正确。
3、出示“你知道吗?
——中国是最早使用负数的国家”
今天这节课,你有哪些收获?
四、寻找生活中的正数和负数。
在生活中,在哪里见到过负数?
学生说出存折,电梯面板等等,并要求说明这些负数的意思
练习一4
选择合适的温度连一连
冰箱中的鱼水中的鱼烧好的鱼
10℃70℃-10℃
练习一5
你知道下面的温度吗?
水沸腾的温度()℃
水结冰的温度()℃
月球表面的温度()℃
+8,-5
结合今天学习的内容,说说这两个数表示的意思吗?
全课总结:
(电脑出示有关图片)像零摄氏度以上与零摄氏度以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股价的上涨和下跌等等都是由相反意义的量,都可以用正负数来表示。
课后请同学们搜集有关负数在生活中应用的资料,下节课来交流。
[课后札记]
第三课时实践活动:
面积是多少
苏教版五年级数学下册第一单元P10——11
1.复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。
2.让学生体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算作比较充分的知识准备和思想准备。
教学重难点:
对图形进行分解与组合、分割与移拼的转化方法
教学具准备:
教学挂图、学具盒
教学过程:
一、分一分、数一数
1、下面两个图形的面积分别是多少平方厘米?
你能先把每个图形分成几块,再数一数吗?
2、你是怎样分的?
怎样数的?
在小组里交流一下。
二、移一移、数一数
1、怎样移动右边图形中的一部分,能很快数出它的面积?
2、利用分割与平移,保持面积不变,把多边形转化为长方形,计算它的面积。
这个图形的面积是多少?
三、数一数、算一算
1、下面是牧场中一个池塘的平面图。
先把池塘上面整格的和不满整格的分别涂上不同的颜色,数一数各有多少个,再算出池塘面积大约是多少平方米?
(不满整格的,都按半格计算)。
2、你算出的面积大约是多少?
这样的算法合理吗?
在小组里说说自己的想法。
3、你能算出右边树叶的面积大约是多少平方厘米吗?
四、估一估、算一算
1、采集几片树叶,先估计他们的面积个是多少平方厘米,再把树叶描在第122页的方格纸上,用数方格的方法算促他们的面积。
2、你能用这样的方法算出自己手掌的面积吗?
五、小结:
今天我们进行面积是多少实践活动,怎样计算不规则图形的面积呢?
第二单元:
多边形面积的计算
平行四边形面积的计算
1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
理解并掌握平行四边形的面积公式
理解平行四边形面积公式的推导过程
一、复习导入:
1、说出学过的平面图形。
2、在这些图形中,哪些图形的面积你会求?
二、探究新知:
1、教学例1:
(1)出示例1中的第1组图
要求:
下面的两个图形面积是否相等?
在小组里说一说你准备怎样比较这两个图形的面积。
(学生分组活动后组织交流)
(2)出示例1中的第2组图
要求:
不用刚才的方法还能比较这两个图形的大小吗?
(学生交流,教师适当强调“转化”的方法。
)
(3)揭示课题:
今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。
今天我们来研究“平行四边形面积的计算”。
(板书课题)
2、教学例2:
(1)出示一个平行四边形
师:
你能想办法把这个平行四边形转化成学过的图形吗?
(2)学生操作,教师巡视指导。
(3)学生交流操作情况
第一种:
①沿着平行四边形的高剪下左边的直角三角形。
②把这个三角形向右平移。
③到斜边重合。
第二种:
①沿着平行四边形的任意一条高将其剪为两个梯形。
②把左侧的梯形向右平移。
③道斜边重合。
(4)教室用课件进行演示并小结。
沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。
(5)小组讨论:
①转化后长方形的面积与原平行四边形面积相等吗?
②长方形的长与平行四边形的底有什么关系?
③长方形的宽与平行四边形的高有什么关系?
(6)学生总结,形成下面的板书:
长方形的面积=长X宽
平行四边形的面积=底X高
3、教学例3:
(1)提问:
是不是任意一个平行四边形都能转化成长方形?
都能推导出平行四边形的面积公式呢?
请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。
转化后的长方形
平行四边形
长(cm)
宽(cm)
面积(cm)
底(cm)
高(cm)
(2)学生操作,反馈交流。
(3)用字母表示面公式:
S=ah(板书)
三、巩固练习:
1、指导完成试一试:
明确应用公式求平行四边形的面积一般要有两个条件,即底和高。
2、指导完成练一练:
强调底和高的对应关系。
四、总结:
通过今天的学习有哪些收获?
板书设计:
平行四边形面积的计算
转化
已学过的图形新图形
割补、剪拼
因为长方形的面积=长×
宽
所以平行四边形的面积=底×
高
课后札记:
第三课时:
三角形面积的计算
1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。
2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。
理解并掌握三角形面积的计算公式
理解三角形面积公式的推导过程
一、复习导入:
复习平行四边形面积公式的推导过程
二、探究新知:
1、教学例4:
仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?
先自己想,随后在小组中交流。
学生讨论后汇报(平行四边形的面积÷
2)
为什么可以用“平行四边形的面积÷
2”求出每个涂色的三角形的面积?
三角形与平行四边形究竟有怎样的关系?
三角形的面积有应当如何计算?
今天继续运用“转化”的方法来研究三角形面积的计算。
(板书课题:
三角形面积的计算)
2、教学例5:
(1)出示例5:
用例5中提供的三角形拼成平行四边形。
(注意:
组内所选的三角形都要齐全)
(2)小组交流:
你认为拼成一个平行四边形所需要的两个三角形有什么特点?
要使学生明确:
用两个完全一样的三角形可以拼成一个平行四边形。
(3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。
如何计算一个三角形的面积?
从表中可以看出三角形与拼成的平行四边形还有怎样的关系?
(小组交流)
得出以下结论:
这两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个平行四边形。
这个平行四边形的底等于三角