中南大学 数字通信原理实验报告Word文档下载推荐.docx
《中南大学 数字通信原理实验报告Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《中南大学 数字通信原理实验报告Word文档下载推荐.docx(27页珍藏版)》请在冰豆网上搜索。
实验仪器台号
指导老师
李敏
实验日期及节次
第10周周五7-8节课
一、实验目的
1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码时分复用信号的帧结构特点。
5、了解HDB3(AMI)编译码集成电路CD22103。
二、实验内容
1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形。
三、实验步骤
本实验使用数字信源单元和HDB3编译码单元。
1、熟悉数字信源单元和HDB3编译码单元的工作原理。
接好电源线,打开电源开关。
2、用示波器观察数字信源单元上的各种信号波形。
用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:
(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);
(2)用开关K1产生代码×
1110010(×
为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
3、用示波器观察HDB3编译单元的各种波形。
仍用信源单元的FS信号作为示波器的外同步信号。
(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开关K4置于右方HDB3端)波形。
再将K1、K2、K3置为全0,观察全0码对应的AMI码和HDB3码。
观察时应注意AMI、HDB3码的码元都是占空比为0.5的双极性归零矩形脉冲。
编码输出AMI-HDB3比信源输入NRZ-OUT延迟了4个码元。
(2)将K1、K2、K3置于011100100000110000100000态,观察并记录对应的AMI码和HDB3码。
(3)将K1、K2、K3置于任意状态,K4先置左方(AMI)端再置右方(HDB3)端,CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的DET、BPF、BS-R和NRZ,观察这些信号波形。
观察时应注意:
HDB3单元的NRZ信号(译码输出)滞后于信源模块的NRZ-OUT信号(编码输入)8个码元。
DET是占空比等于0.5的单极性归零码。
BPF信号是一个幅度和周期都不恒定的准正弦信号,BS-R是一个周期基本恒定(等于一个码元周期)的TTL电平信号。
信源代码连0个数越多,越难于从AMI码中提取位同步信号(或者说要求带通滤波的Q值越高,因而越难于实现),而HDB3码则不存在这种问题。
本实验中若24位信源代码中连零很多时,则难以从AMI码中得到一个符合要求的稳定的位同步信号,因此不能完成正确的译码(由于分离参数的影响,各实验系统的现象可能略有不同。
一般将信源代码置成只有1个“1”码的状态来观察译码输出)。
若24位信源代码全为“0”码,则更不可能从AMI信号(亦是全0信号)得到正确的位同步信号。
4、实验报告要求
1.根据实验观察和纪录回答:
(1)不归零码和归零码的特点是什么?
(2)与信源代码中的“1”码相对应的AMI码及HDB3码是否一定相同?
为什么?
答:
1)不归零码特点:
脉冲宽度
τ
等于码元宽度Ts
归零码特点:
<Ts
2)与信源代码中的“1”码对应的AMI码及HDB3码不一定相同。
因信源代码中的“1”码对应的AMI码“1”、“-1”相间出现,而HDB3码中的“1”,“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。
2.设代码为全1,全0及011100100000110000100000,给出AMI及HDB3码的代码和波形。
信息代码
1
1
1
AMI
-1
HDB3
信息代码
0
0
0
HDB3
-1
-1
0
1
0
0-1
00
–1
3.总结从HDB3码中提取位同步信号的原理。
HDB3中不含有离散谱fS(fS在数值上等于码速率)成分。
整流后变为一个占空比等于0.5的单极性归零码,其连0个数不超过3,频谱中含有较强的离散谱fS成分,故可通过窄带带通滤波器得到一个相位抖动较小的正弦信号,再经过整形、移相后即可得到合乎要求的位同步信号。
4.试根据占空比为0.5的单极性归零码的功率谱密度公式说明为什么信息代码中的连0码越长,越难于从AMI码中提取位同步信号,而HDB3码则不存在此问题。
将HDB3码整流得到的占空比为0.5的单极性归零码中连“0”个数最多为3
,而将AMI码整流后得到的占空比为0.5的单极性归零码中连“0”个数与信息代码中连“0”
个数相同。
所以信息代码中连“0”码越长,AMI码对应的单极性归零码中“1”码出现概率越小,fS离散谱强度越小,越难于提取位同步信号。
而HDB3码对应的单极性归零码中“1”码出现的概率大,fS离散谱强度大,于提取位同步信号。
附:
实验摄图
1、信源代码:
111111111111111111111111
对应的AMI码波形如下:
对应的HDB3码波形如下:
2、信源代码:
000000000000000000000000
3、信源代码:
011100100000110000100000
4、信源代码:
111100000110110010000110
对应的HDB3单元的DET信号波形如下:
对应的HDB3单元的NRZ信号波形如下:
实验二数字调制
数字调制
第12周周六5-8节课
一、实验目的
1、掌握绝对码、相对码概念及它们之间的变换关系。
2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。
3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。
4、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。
二、实验内容
1、用示波器观察绝对码波形、相对码波形。
2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。
3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。
三、实验步骤
本实验使用数字信源单元及数字调制单元。
1、熟悉数字调制单元的工作原理。
接通电源,打开实验箱电源开关。
将数字调制单元单刀双掷开关K7置于左方N(NRZ)端。
2、用数字信源单元的FS信号作为示波器的外同步信号,示波器CH1接信源单元的(NRZ-OUT)AK(即调制器的输入),CH2接数字调制单元的BK,信源单元的K1、K2、K3
置于任意状态(非全0),观察AK、BK波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。
3、示波器CH1接2DPSK,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PSK信号相位变化与信源代码的关系)。
注意:
2DPSK信号的幅度比较小,要调节示波器的幅度旋钮,而且信号本身幅度可能不一致,但这并不影响信息的正确传输。
4、示波器CH1接AK、CH2依次接2FSK和2ASK;
观察这两个信号与AK的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的)。
5、用频谱议观察AK、2ASK、2FSK、2DPSK信号频谱(条件不具备时不进行此项观察)。
四、实验报告要求
1、设绝对码为全1、全0或10011010,求相对码。
答:
绝对码
11111,00000,10011010
相对码
10101,00000,11101100
或
01010,11111,00010011
2、设相对码为全1、全0或10011010,求绝对码。
相对码
绝对码
00000,00000,01010111
10000,10000,11010111
3、设信息代码为10011010,假定载频分别为码元速率的1倍和1.5倍,画出2DPSK及2PSK信号波形。
4、总结绝对码至相对码的变换规律、相对码至绝对码的变换规律并设计一个由相对码至绝对码的变换电路。
①
绝对码至相对码的变换规律
“1”变“0”不变,即绝对码的“1”码时相对码发生变化,绝对码的“0”码时相对码不发生变化。
②
相对码至绝对码的变换规律
相对码的当前码元与前一码元相同时对应的当前绝对码为“0”码,相异时对应的当前绝对码为“1”码。
5、总结2DPSK信号的相位变化与信息代码(即绝对码)之间的关系以及2DPSK信号的相位变化与相对码之间的关系(即2PSK的相位变化与信息代码之间的关系)。
2DPSK信号的相位变化与绝对码(信息代码)之间的关系是:
“1变0不变”,即“1”码对应的2DPSK信号的初相相对于前一码元内2DPSK信号的末相变化180º
,“0”码对应的2DPSK信号的初相与前一码元内2DPSK信号的末相相同。
2PSK
信号的相位变化与相对码(信息代码)之间的关系是:
“异变同不变”,即当前码元与前一码元相异时则当前码元内2PSK信号的初相相对于前一码元内2PSK信号的末相变化180º
。
相同时则码元内2PSK信号的初相相对于前一码元内2PSK信号的末相无变