成都中考A卷20题圆试题精选.doc
《成都中考A卷20题圆试题精选.doc》由会员分享,可在线阅读,更多相关《成都中考A卷20题圆试题精选.doc(32页珍藏版)》请在冰豆网上搜索。
成都中考A卷20题圆试题精选
考试范围:
圆综合;考试时间:
100分钟;命题人:
数学备课组
学校:
___________姓名:
___________班级:
___________考号:
___________
一.解答题(共13小题)
1.如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=BC.
(1)求∠BAC的度数;
(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:
四边形AFHG是正方形;
(3)若BD=6,CD=4,求AD的长.
2.如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC.
(1)求证:
D是的中点;
(2)求证:
∠DAO=∠B+∠BAD;
(3)若,且AC=4,求CF的长.
3.已知:
如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
(1)求证:
∠DAC=∠DBA;
(2)求证:
P是线段AF的中点;
(3)若⊙O的半径为5,AF=,求tan∠ABF的值.
4.已知,如图,AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于D(AD<DB),点E是DB上任意一点(点D、B除外),直线CE交⊙O于点F,连接AF与直线CD交于点G.
(1)求证:
AC2=AG•AF;
(2)若点E是AD(点A除外)上任意一点,上述结论是否仍然成立?
若成立,请画出图形并给予证明;若不成立,请说明理由.
5.如图,AB是半圆O的直径,AB=2.射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.
(1)求证:
△ABC∽△OFB;
(2)当△ABD与△BFO的面枳相等时,求BQ的长;
(3)求证:
当D在AM上移动时(A点除外),点Q始终是线段BF的中点.
6.如图,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连接AB并延长交⊙O2于点C,连接O2C.
(1)求证:
O2C⊥O1O2;
(2)证明:
AB•BC=2O2B•BO1;
(3)如果AB•BC=12,O2C=4,求AO1的长.
7.如图,△ABC内接于⊙O,AB是⊙O的直径,PA是过A点的直线,∠PAC=∠B,
(1)求证:
PA是⊙O的切线;
(2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:
ED=6:
5,AE:
EB=2:
3,求AB的长和∠ECB的正切值.
8.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:
直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.
9.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,
(1)求证:
CB∥PD;
(2)若BC=3,sin∠P=,求⊙O的直径.
10.如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC.
(1)求证:
BD=DC=DI;
(2)若圆O的半径为10cm,∠BAC=120°,求△BDC的面积.
11.如图1,等腰直角三角形ABC的腰长是2,∠ABC=90度.以AB为直径作半圆O,M是BC上一动点(不运动至B、C两点),过点M引半圆为O的切线,切点是P,过点A作AB的垂线AN,交切线MP于点N,AC与ON、MN分别交于点E、F.
(1)证明:
△MON是直角三角形;
(2)当BM=时,求的值(结果不取近似值);
(3)当BM=时(图2),判断△AEO与△CMF是否相似?
如果相似,请证明;如果不相似,请说明理由.
12.如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.
(1)求证:
BC是⊙O的切线;
(2)连接AF、BF,求∠ABF的度数;
(3)如果BE=10,sinA=,求⊙O的半径.
13.如图,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直AB于点F,交BC于点G,连接PC,∠BAC=∠BCP,求解下列问题:
(1)求证:
CP是⊙O的切线.
(2)当∠ABC=30°,BG=,CG=时,求以PD、PE的长为两根的一元二次方程.
(3)若
(1)的条件不变,当点C在劣弧AD上运动时,应再具备什么条件可使结论BG2=BF•BO成立?
试写出你的猜想,并说明理由.
参考答案与试题解析
一.解答题(共13小题)
1.如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=BC.
(1)求∠BAC的度数;
(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:
四边形AFHG是正方形;
(3)若BD=6,CD=4,求AD的长.
【分析】
(1)连接OB、OC,由垂径定理知E是BC的中点,而OE=BC,可判定△BOC是直角三角形,则∠BOC=90°,根据同弧所对的圆周角和圆心角的关系即可求得∠BAC的度数;
(2)由折叠的性质可得到的条件是:
①AG=AD=AF,②∠GAF=∠GAD+∠DAF=2∠BAC=90°,且∠G=∠F=90°;由②可判定四边形AGHF是矩形,联立①的结论可证得四边形AGHF是正方形;
(3)设AD=x,由折叠的性质可得:
AD=AF=x(即正方形的边长为x),BG=BD=6,CF=CD=4;进而可用x表示出BH、HC的长,即可在Rt△BHC中,由勾股定理求得AD的长.
【解答】
(1)解:
连接OB和OC;
∵OE⊥BC,
∴BE=CE;
∵OE=BC,
∴∠BOC=90°,
∴∠BAC=45°;
(2)证明:
∵AD⊥BC,
∴∠ADB=∠ADC=90°;
由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°,
∠BAG=∠BAD,∠CAF=∠CAD,
∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;
∴∠GAF=∠BAG+∠CAF+∠BAC=90°;
∴四边形AFHG是正方形;
(3)解:
由
(2)得,∠BHC=90°,GH=HF=AD,GB=BD=6,CF=CD=4;
设AD的长为x,则BH=GH﹣GB=x﹣6,CH=HF﹣CF=x﹣4.
在Rt△BCH中,BH2+CH2=BC2,
∴(x﹣6)2+(x﹣4)2=102;
解得,x1=12,x2=﹣2(不合题意,舍去);
∴AD=12.
【点评】此题主要考查了垂径定理、勾股定理、正方形的判定和性质以及图形的翻折变换等知识,能够根据折叠的性质得到与所求相关的相等角和相等边是解答此题的关键.
2.如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC.
(1)求证:
D是的中点;
(2)求证:
∠DAO=∠B+∠BAD;
(3)若,且AC=4,求CF的长.
【分析】
(1)由AC是⊙O的直径,即可求得OD∥BC,又由AE⊥OD,即可证得D是的中点;
(2)首先延长OD交AB于G,则OG∥BC,可得OA=OD,根据等腰三角形的性质,即可求得∠DAO=∠B+∠BAD;
(3)由AO=OC,S△OCD=S△ACD,即可得,又由△ACD∽△FCE,根据相似三角形的面积比等于相似比的平方,即可求得CF的长.
【解答】
(1)证明:
∵AC是⊙O的直径,
∴∠AEC=90°,
∴AE⊥BC,
∵OD∥BC,
∴AE⊥OD,
∴D是的中点;
(2)证明:
方法一:
如图,延长OD交AB于G,则OG∥BC,
∴∠AGD=∠B,
∵∠ADO=∠BAD+∠AGD,
又∵OA=OD,
∴∠DAO=∠ADO,
∴∠DAO=∠B+∠BAD;
方法二:
如图,延长AD交BC于H,
则∠ADO=∠AHC,
∵∠AHC=∠B+∠BAD,
∴∠ADO=∠B+∠BAD,
又∵OA=OD,
∴∠DAO=∠B+∠BAD;
(3)解:
∵AO=OC,
∴S△OCD=S△ACD,
∵,
∴,
∵∠ACD=∠FCE,∠ADC=∠FEC=90°,
∴△ACD∽△FCE,
∴,
即:
,
∴CF=2.
【点评】此题考查了垂径定理,平行线的性质以及相似三角形的判定与性质等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.
3.已知:
如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
(1)求证:
∠DAC=∠DBA;
(2)求证:
P是线段AF的中点;
(3)若⊙O的半径为5,AF=,求tan∠ABF的值.
【分析】
(1)根据圆周角定理得出∠DAC=∠CBD,以及∠CBD=∠DBA得出答案即可;
(2)首先得出∠ADB=90,再根据∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°得出∠PDF=∠PFD,从而得出PA=PF;
(3)利用相似三角形的判定得出△FDA∽△ADB即可得出答案.
【解答】
(1)证明:
∵BD平分∠CBA,
∴∠CBD=∠DBA,
∵∠DAC与∠CBD都是弧CD所对的圆周角,
∴∠DAC=∠CBD,
∴∠DAC=∠DBA;
(2)证明:
∵AB为直径,
∴∠ADB=90°,
∵DE⊥AB于E,
∴∠DEB=90°,
∴∠ADE+∠EDB=∠ABD+∠EDB=90°,
∴∠ADE=∠ABD=∠DAP,
∴PD=PA,
∵∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°,
∴∠PDF=∠PFD,
∴PD=PF,
∴PA=PF,
即:
P是AF的中点;
(3)解:
∵∠DAF=∠DBA,∠ADB=∠FDA=90°,
∴△FDA∽△ADB,
∴=,
由题意可知圆的半径为5,
∴AB=10,
∴===,
∴在Rt△ABD中,tan∠ABD==,
即:
tan∠ABF=.
【点评】此题主要考查了相似三角形的判定以及圆周角定理和等腰三角形的性质,根据证明PD=PA以及PD=PF,得出答案是解决问题的关键.
4.已知,如图,AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于D(AD<DB),点E是DB上任意一点(点D、B除外),直线CE交⊙O于点F,连接AF与直线CD交于点G.
(1)求证:
AC2=AG•AF;
(2)若点E是AD(点A除外)上任意一点,上述结论是否仍然成立?
若成立,请画出图形并给予证明;若不成立,请说明理由.
【分析】
(1)欲证AC2=AG•AF,即证AC:
AG=AF:
AC,可以通过证明△AGC∽△ACF得到.
(2)分清E点在AD上有两种情况,然后逐一证明.
【解答】
(1)证明:
连接CB,
∵AB是直径,CD⊥AB,
∴∠ACB=∠ADC=90°,又∠CAD=∠BAC,
∴△CAD∽△BAC,
∴∠ACD=∠ABC,
∵∠ABC=∠AFC,
∴∠ACD=∠AFC,∠CAG=∠FAC,
∴△ACG∽△AFC,
∴,
∴AC2=AG•AF;
(2)解:
当点E