自考线性代数教学大纲教学内容Word格式文档下载.docx
《自考线性代数教学大纲教学内容Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《自考线性代数教学大纲教学内容Word格式文档下载.docx(7页珍藏版)》请在冰豆网上搜索。
它为研究和处理涉及许多变元的线性问题提供了有力的数学工具,应用十分广泛。
通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩阵、线性方程组、矩阵的特征值和特征向量、二次型等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程(如运筹学,现代管理学,计算机等)及进一步扩大数学知识面奠定必要的数学基础。
(二)课程设计思路
本课程标准是根据《线性代数(经管类)自学考试大纲》的精神和要求编写的,章节安排、自学要求、重点难点都符合大纲要求。
结合我校学生状况、教学资源等实际,以课程基本理念为指导,在总结教学经验和研究成果的基础上,对课程目标分别从知识与技能、过程与方法、等方面进行具体明确的阐述。
在讲述中,以理论课为主,课后布置适当作业巩固课堂内容,在每一章结束后适当安排习题课,对于各章在自学考试的重点难点以及作业中出现的问题,及时加以指导,强化巩固各章的教学内容,并穿插讲解历年自考真题。
各章学时分配
第一章行列式8
第二章矩阵18
第三章向量空间12
第四章线性方程组6
第五章特征值与特征向量12
第六章实二次型8
合计64
二、课程教学目标及基本教学要求
通过本课程的教学,要求学生:
1.理解行列式的性质,会计算行列式;
2.熟练掌握矩阵的各种运算;
3.学会判别向量组的线性相关与线性无关。
理解向量组的秩和矩阵的秩的概念及其关系。
4.掌握线性方程组的解的结构和利用初等行变换法求解线性方程组的方法;
5.会求实方阵的特征值和特征向量,掌握方阵可对角化的条件,掌握方阵对角化的计算方法;
6.了解实二次性的概念和会正定二次型的判别方法。
本课程的重点是行列式的计算;
矩阵的运算;
初等变换法在求矩阵的逆、秩和向量组的相关性以及解线性方程组中的应用;
特征值,特征向量的求法;
n阶矩阵与对角矩阵相似的条件及矩阵对角化;
用配方法化二次型为标准形。
本课程难点是一般的n阶行列式计算;
矩阵的乘积及分块矩阵的乘积;
向量间的线性关系;
n阶矩阵与对角矩阵相似的条件;
利用正交矩阵化实对称矩阵为对角矩阵;
用正交变换法化二次型为标准形。
在教学过程中,要求学生切实掌握有关内容的基本概念、基本理论和基本方法。
通过讲解、复习、做大量的练习,具有比较熟练的运算能力,同时培养抽象思维能力和逻辑推理能力,并不断提高自学能力。
三课程详细内容和要求
第一章行列式(8学时)
本章的教学目标与教学要求:
理解n阶行列式的定义及其性质;
掌握用行列式的计算方法(特别是低阶的数字行列式和具有特殊形状的文字或数字行列式);
掌握克莱姆法则;
知道齐次线性方程组有非零解(仅有零解)的判定。
教学内容:
二阶三阶行列式和n阶行列式的定义;
行列式的性质(证明选讲);
行列式按行(列)展开;
克莱姆法则。
本章的重点、难点和考点:
重点:
行列式的性质;
行列式按某一行(列)展开定理;
齐次线性方程组有非零解(仅有零解)的结论。
难点:
一般的n阶行列式计算。
考点:
行列式的定义(识记)、性质和计算(简单应用)。
第二章矩阵(18学时)
熟练掌握矩阵加、减、数乘、乘的运算规则(明确矩阵与行列式的区别),了解其经济背景,熟练掌握方阵的行列式的有关性质;
了解矩阵分块的原则;
掌握分块矩阵的运算规则;
理解可逆矩阵的概念及其性质;
会用伴随阵求矩阵的逆。
熟练掌握用初等行变换的方法求矩阵的逆;
了解初等矩阵的概念及它们与矩阵初等变换的关系;
熟练掌握用初等变换的方法求矩阵的秩。
矩阵的概念;
矩阵的运算(矩阵的加、减法;
数乘;
乘法;
矩阵转置;
方阵的幂;
方阵的行列式);
几种特殊的矩阵(对角矩阵,数量矩阵,三角形矩阵,单位矩阵,对称矩阵与反对称矩阵);
分块矩阵(分块阵及其运算,分块对角阵);
逆矩阵(可逆阵的定义;
伴随阵与逆阵的关系;
逆阵的性质,二阶上三角分块阵的求逆方法);
矩阵的初等变换(初等矩阵定义;
初等矩阵与矩阵初等变换的关系。
用初等变换求矩阵的逆);
矩阵的秩(矩阵的秩的定义;
矩阵的秩与其子式的关系;
初等变换求矩阵的秩)。
矩阵加、减、数乘、乘的运算;
初等变换求矩阵的逆;
初等变换求矩阵的秩。
矩阵不满足的运算律与矩阵的秩的概念的理解。
矩阵的定义(识记)及其各种运算(重点是乘法,要求综合应用);
方阵的逆矩阵的判别和求法(会求伴随矩阵,会计算逆阵);
分块矩阵及其运算(识记);
矩阵的初等变换和初等方阵(熟练应用);
矩阵的秩(会求)
第三章向量空间(12学时)
知道向量的概念;
熟练掌握向量的加法和数乘运算;
掌握同维数向量组线性组合的概念和组合系数的求法;
掌握向量组的线性相关、线性无关的定义和判别法;
理解向量组的极大无关组和秩的定义并要会求之;
清楚向量组的秩和矩阵的秩之间的关系;
知道向量空间的基与维数和坐标的概念并会求一组基及在基下的坐标。
n维向量的定义;
向量的加法与数乘运算;
向量间的线性关系(线性组合;
线性相关与线性无关;
关于线性组合与线性相关的定理;
向量组的极大无关组与秩(矩阵的行秩与列秩);
n维向量空间。
本章的重点、难点与考点:
线性组合系数的求法;
求向量组的秩;
向量组线性相关与线性无关的判别。
极大无关组与向量组的秩的理解;
线性无关与线性相关的判别法。
n维向量的定义(识记);
向量组的线性组合(会求组合系数);
向量组的线性相关与线性无关的判别(熟练判断、证明);
向量组的极大无关组与秩(熟练求解);
n维向量空间(会求基及坐标)。
第四章线性方程组(6学时)
掌握齐次线性方程组的解空间、基础解系及通解的含义和求法;
熟练掌握非齐次线性方程组的有解判别法和通解的求法。
教学内容
齐次线性方程组有非零解的充要条件;
齐次线性方程组解的性质与解空间、基础解系与通解;
非齐次线性方程组有解的条件、解的性质、结构和通解求法。
本章的重点与难点:
非齐次线性方程组有解的条件;
矩阵初等行变换求线性方程组的解的方法。
齐次线性方程组的基础解系的求法。
齐次线性方程组有非零解的充要条件(熟记);
齐次线性方程组解的性质与解空间(理解);
齐次线性方程组的基础解系与通解(综合应用、熟练求解);
非齐次线性方程组有解的条件(熟记);
非齐次线性方程组解的性质、结构和通解求法(综合应用、熟练求解)。
第五章矩阵的特征值(12学时)
熟练掌握矩阵特征值、特征向量的概念与求法;
了解特征值、特征向量的性质;
清楚两个同阶方阵相似的概念和性质;
理解方阵相似于对角形矩阵的条件并会用相似变换化方阵为对角阵;
会计算两个实向量的内积和向量的长度,会判断两向量是否正交;
了解正交向量组的定义,会用施密特正交化方法把线性无关的向量组化为等价的正交单位向量组;
了解正交矩阵的定义、性质及判别法;
了解实对称矩阵的特征值和特征向量的性质;
会用正交矩阵化实对称矩阵为对角阵。
矩阵的特征值与特征向量(矩阵的特征值和特征向量的定义;
特征方程;
特征值,特征向量的求法及有关性质);
相似矩阵(相似矩阵及其性质;
n阶矩阵与对角矩阵相似的条件);
实对称矩阵的特征值和特征向量(向量内积的定义,向量的长度;
正交向量组(施密特正交化过程);
正交矩阵的定义及其性质,实对称矩阵的特征值和特征向量。
利用正交矩阵化实对称矩阵为对角矩阵)。
求实方阵的特征值和特征向量;
方阵可对角花的条件和方法;
方阵的相似对角化;
实对称矩阵的正交相似对角化。
方阵与实对称矩阵的相似标准形的求法。
特征值与特征向量(会求);
相似矩阵的定义与性质(理解掌握);
方阵相似对角化(熟练掌握);
向量内积和正交矩阵(清楚定义,理解性质,掌握方法);
实对称阵的性质(知道)与正交相似标准形(会求)。
第六章实二次型(8学时)
理解实二次型的定义;
掌握二次型的矩阵表示方法;
了解二次型的标准形;
了解合同矩阵的概念;
会用正交变换化二次型为标准形;
了解用配方法化二次型为合同标准形;
知道惯性定理;
理解正定二次型、正定矩阵的定义和有关性质;
掌握正定二次型和正定矩阵的判别法。
实二次型与标准形(二次型及其矩阵;
二次型的标准形;
合同矩阵;
用配方法化二次型为标准形;
用正交变换法化二次型为标准形);
正定二次型与正定矩阵(正定二次型,正定矩阵及其性质)。
化二次型为标准形;
正定二次型和正定矩阵的判别法。
实二次型的定义及其矩阵表示(清楚、理解);
实二次型的标准形(知道);
化实二次型为标准形(掌握会求);
知道惯性定理与二次型的规范性(知道);
正定二次型、正定矩阵(理解概念、掌握判别方法)。
四实施建议
(一)教学组织
在学校成教处统一组织下,由试本高数教研室主任负责,成立教学组,实施备课,大课讲授,自学辅导,指导性自习,考试与考查,真题模拟等教学活动。
(二)教学方法
在本门教学中应注意理论与实践的结合,注意学生智能的培养,使学生通过对矩阵等概念的学习,掌握线性方程组的解的结构,进而认识和掌握线性空间的概念,为后续课程的学习打好数学基础。
1、讲课讲课以大班为主。
教师要做到备思想,备知识,备对象,备方法。
对重点、
难点和新的教学内容,必要时可经集体讨论预讲,以保证教学质量。
讲课要用启发式,讲述问题要有充分实验根据,理论归纳要有逻辑。
教学过程要尽量采用现代化教学手段。
学生在听课前进行预习,听课时要集中注意力,课后认真复习教材,以消化和巩固讲授内容。
2、作业在数学课的教学中,习题是十分重要且必不可少的一个环节。
课后作业以巩
固、掌握基础知识和理论为重点,适量的穿插布置历年考试真题。
3、习题课适当安排习题课,对于本章在自学考试中的重点难点以及作业中出现的问题,及时加以指导,巩固本章的教学效果。
五课程考核评价建议
(一)教员授课质量评价
对课程考核结果进行评价,可准确反映教学质量的水平,而反映教学质量的重要指标就是教师的教学能力。
建立教师授课质量评价体系,可从学员评价、同行评价和教学管理部门评价等进行“三位一体”的总体评估。
评价的指标主要包括:
课堂内容融会贯通,讲解精炼;
理论联系实际,易于理解;
层次分明,重点突出,不照本宣科;
重点、难点内容讲深讲透;
板书整齐有条理,注重现代教育的应用;
普通话授课,语言生动,快慢适中;
启发式教学,调动学员积极思维;
结合教学内容重视素质教育和辩证唯物主义;
教学内容丰富。
(二)学生课程学业考核
1、本门课程是一门国考课程,评价依据即为考试成绩。
2、考试时间:
150分钟。
3、考试方式:
闭卷笔试。
60分为及格线。
4、试题类型、数目及分值
单项选择题:
10小题共20分;
填空题10小题,共20分:
计算题6小题,共54分;
证明题1小题,6分。
六教学必需的保障条件及建议
(一)教学建议
1、建立年轻教师