纳维斯托克斯方程Word文件下载.docx
《纳维斯托克斯方程Word文件下载.docx》由会员分享,可在线阅读,更多相关《纳维斯托克斯方程Word文件下载.docx(8页珍藏版)》请在冰豆网上搜索。
用数学术语来讲,这些变化率对应于变量的导数。
这样,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。
这表示对于给定的物理问题的纳维-斯托克斯方程的解必须用微积分的帮助才能取得。
实用上,只有最简单的情况才能用这种方法解答,而它们的确切答案是已知的。
这些情况通常涉及稳定态(流场不随时间变化)的非湍流,其中流体的粘滞系数很大或者其速度很小(小的雷诺数)。
对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机。
这本身是一个科学领域,称为计算流体力学。
虽然湍流是日常经验中就可以遇到的,但这类问题极难求解。
一个$1,000,000的大奖由克雷数学学院于2000年5月设立,奖给对于能够帮助理解这一现象的数学理论作出实质性进展的任何人。
系中的导数)而第二项表示由于流体的运动带来的变化。
这个效应称为移流(advection)。
L的守恒定律在一个控制体积上的积分形式是:
因为Ω是共动的,它随着时间而改变,所以我们不能将时间导数和积分简单的交换。
因为这个表达式对于所有成立,它可以简化为:
对于不是密度的量(因而它不必在空间中积分),给出了正确的共动时间导数。
守恒定律
主条目:
NS方程可以从守恒定律通过上述变换导出,并且需要用状态定律来闭合。
在控制体积上,使用上述变换,下列的量视为守恒:
∙质量
∙能量
∙动量
∙角动量
连续性方程
质量的守恒写作:
其中
是流体的密度。
在不可压缩流体的情况不是时间或空间的函数。
方程简化为:
动量守恒
动量守恒写作:
注意是一个张量,代表张量积。
我们可以进一步简化,利用连续性方程,这成为:
我们可以认出这就是通常的F=ma。
方程组
一般形式
方程组的形式
纳维-斯托克斯方程的一般形式是:
关于动量守恒。
张量代表施加在一个流体粒子上的表面力(应力张量)。
除非流体是由象旋涡这样的旋转自由度组成,是一个对称张量。
一般来讲,我们有如下形式:
其中是法向约束,而是切向约束。
迹在流体处于平衡态时为0。
这等价于流体粒子上的法向力的积分为0。
我们再加上连续性方程:
对于处于平衡的液体,的迹是3p。
p是压强
最后,我们得到:
其中是的非对角线部分。
闭合问题
这些方程是不完整的。
要对它们进行完备化,必须对的形式作一些假设。
例如在理想流体的情况分量为0。
用于完备方程组的方程是状态方程。
再如,压强可以主要是密度和温度的函数。
要求解的变量是速度的各个分量,流体密度,静压力,和温度。
流场假定为可微并连续,使得这些平衡得以用偏微分方程表达。
这些方程可以转化为涡度和流函数这些次变量的威尔金森方程组。
解依赖于流体的性质(例如粘滞度、比热、和热导率),并且依赖于所研究的区域的边界条件。
的分量是流体的一个无穷小元上面的约束。
它们代表垂直和剪切约束。
是对称的,除非存在非零的自旋密度。
所谓非牛顿流体是就是其中该张量没有特殊性质使得方程的特殊解出现的流体
特殊形式
这些是问题的特定的常见简化,有时解是已知的。
牛顿流体
在牛顿流体中,如下假设成立:
是液体的粘滞度。
其中为简化书写,对脚标使用了爱因斯坦求和约定。
不采用简化书写的完整形式非常繁琐,分别为:
动量守恒:
质量守恒:
因为密度是一个未知数,我们需要另一个方程。
能量守恒:
其中:
假设一个理想气体:
上面是一个6个方程6个未知数的系统。
(u,v,w,T,e以及 )。
宾汉(Bingham)流体
宾汉流体
在宾汉流体中,我们有稍微不同的假设:
那些流体在开始流动之前能够承受一定的剪切。
牙膏是一个例子。
幂律流体
这是一种理想化的流体,其剪切应力,,由下式给出
不可压缩流体
其纳维-斯托克斯方程(Navier-Stokeequation)为
动量守恒和
质量守恒。
其中,对不可压缩牛顿流体来说,只有对流项(convectiveterms)为非线性形式。
对流加速度(convectiveacceleration)来自于流体流动随空间之变化所产生的速度改变,例如:
当流体通过一个渐缩喷嘴(convergentnozzle)时,流体产生加速之情况。
由于此项的存在,对于暂态运动中的流体来说,其流场速度变化不再单是时间的函数,亦与空间有关。
另外一个重要的观察重点,在于黏滞力(viscosity)在流场中的以流体速度作拉普拉斯运算来表现。
这暗示了在牛顿流体中,黏滞力为动量扩散(diffusionofmomentum),与热扩散方程非常类似。
;
是散度,
是克罗内克记号。
若在整个流体上均匀,动量方程简化为
(若这个方程称为欧拉方程;
那里的重点是可压缩流和冲击波)。
如果现在再有为常数,我们得到如下系统:
连续性方程(假设不可压缩性):
N-S方程的简化版本。
采用《不可压缩流》,RonaldPanton所著第二版
注意纳维-斯托克斯方程仅可近似描述液体流,而且在非常小的尺度或极端条件下,由离散的分子和其他物质(例如悬浮粒子和溶解的气体)的混合体组成的真实流体,会产生和纳维-斯托克斯方程所描述的连续并且齐性的液体不同的结果。
依赖于问题的纳森数,统计力学可能是一个更合适的方法。
但是,纳维-斯托克斯方程对于很大范围的实际问题是有效的,只要记住他们的缺陷是天生的就可以了。
参看
∙雷诺数
∙马赫数
∙雷诺平均纳维-斯托克斯方程
参考文献
∙IngeL.RhymingDynamiquedesfluides,1991PPUR.
∙PolyaninA.D.,KutepovA.M.,VyazminA.V.,KazeninD.A.,Hydrodynamics,MassandHeatTransferinChemicalEngineering,Taylor&
Francis,London,2002.ISBN0-415-27237-8.
外部链接
∙克雷数学研究院纳维-斯托克斯方程大奖
o该问题的正式命题
∙纳维-斯托克斯方程的一个推导
∙纳维-斯托克斯方程的推导
∙NASA关于纳维-斯托克斯方程的网页
∙纳维-斯托克斯方程(一些精确解),位于EqWorld:
数学方程的世界
查
·
论
编
连续介质力学
基本定律
质量守恒、动量守恒、能量守恒、熵不等式
固体力学
固体、胡克定律、杨氏模量、弹性、体积模量、泊松比、形变、剪切模量、应力、塑性、有限应变理论、无限小应变理论、粘弹性、流变学
流体力学
流体、流体静力学、黏度、表面张力、流体动力学、牛顿流体、非牛顿流体
科学史
牛顿、斯托克斯、纳维、柯西、胡克、伯努利