小升初经典奥数题附答案文档格式.docx
《小升初经典奥数题附答案文档格式.docx》由会员分享,可在线阅读,更多相关《小升初经典奥数题附答案文档格式.docx(21页珍藏版)》请在冰豆网上搜索。
小华要拍同样多次要用几分?
【试题】同学们到车站义务劳动,3个同学擦12块玻璃。
(补充不同的条件求问题,编成两道不同的两步计算应用题)。
"
照这样计算,9个同学可以擦多少块玻璃?
"
【试题】两个车间装配电视机。
第一车间每天装配35台,第二车间每天装配37台。
照这样计算,这两个车间15天一共可以装配电视机多少台?
【试题】把7本相同的书摞起来,高42毫米。
如果把28本这样的书摞起来,高多少毫米?
(用不同的方法解答)
【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。
如果每天烧1000千克,可以多烧几天?
【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时
1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?
2.12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?
4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?
5.在花圃的周围方式菊花,每隔1米放1盆花。
花圃周围共20米长。
需放多少盆菊花?
6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。
从发电厂到闹市区有多远?
7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。
他这个月收入多少元?
8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:
大提全长多少千米?
9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。
问:
这批零件有多少个?
10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。
问它几天可以长到4厘米?
11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。
桶里原来有水多少千克?
四年级有三个班,每班有两个班长,开班会时,每次每班只要一个班长参加。
第一次到会的有A,B,C;
第二次到会的有B,D,E;
第三次到会的有A,E,F。
请问哪两位班长是同班的?
拳击比赛,有甲1,甲2,乙1,乙2,丙1,丙2,丁1,丁2共8名选手,其中甲1不需要和甲2比,乙1不需要和乙2比....问总共需要多少场比赛?
(2005年第10届华杯赛决赛第14题)两条直线相交,四个交角中的一个锐角或一个直角称为这两条直线的"
夹角"
(见图4)。
如果在平面上画L条直线,要求它们两两相交,并且"
只能是15°
、30°
、45°
、60°
、75°
、90°
之一,问:
(1)L的最大值是多少?
(2)当L取最大值时,问所有的"
的和是多少?
有4个自然数,用它们拼成四位数,其中最大数和最小数的和是11588,问拼成的四位数中第二小的数是______。
奇偶求和:
(高等难度) 下表中有18个数,选出5个数,使它们的和为28,你能否做到?
为什么?
ABC路程:
(高等难度) A、B、C三地一次分布在由西向东的一条道路上,甲、乙、丙分别从A、B、C三地同时出发,甲、乙向东,丙向西。
乙、丙在距离B地18千米处相遇,甲、丙在B地相遇,而当甲在C地追上乙时,丙已经走过B地32千米。
试问:
A、C间的路程是多少千米?
个位数字:
(高等难度) 求的个位数字。
修水渠问题:
(高等难度) 某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人?
AB间距:
(高等难度) 甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离
下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?
(单位:
厘米)
舞蹈节目:
(高等难度) 一台晚会上有6个演唱节目和4个舞蹈节目。
(1)如果4个舞蹈节目要排在一起,有多少种不同的排列顺序?
(2)如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?
游泳路程:
(高等难度) 两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。
如果不计转向的时间,那么在这段时间内两人共相遇多少次?
巧算公式:
时间路程:
(高等难度) 甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。
问他走后一半路程用了多少分钟?
速算问题:
(高等难度) 如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?
三角面积:
在边长为1的正方形内随意放进9个点,证明其中必有3个点构成的三角形的面积不大于1/8
画圆:
平面上画____个圆,再画一条直线,最多可以把平面分成44部分。
五位数能被3整除,它的最末三个数字组成的三位数能被2整除,求这个五位数.
在43的右边补上三个数字,组成一个五位数,使它能被3,4,5整除,求这样的最小五位数.
整除规律:
6539724能被4,8,9,24,36,72中的哪几个数整除?
五位数能被12整除,求这个五位数
树间距:
正方形操场四周栽了一圈树,每两棵树相隔5米。
甲乙二人同时从一个角出发,向不同的方向走去(如右图),甲的速度是乙的2倍,乙在拐了第一弯之后的第5棵树与甲相遇。
操场四周一共栽了多少棵树?
从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。
铅笔:
小雪、刘星、小雨,他们的关系特别好,一天妈妈分别给他们三个人一些铅笔,小雪觉得自己铅笔很多,于是给了刘星和小雨一部分,结果刘星和小雨的铅笔数量在现有的基础上增加了倍,这时小雨又觉得自己铅笔多了,于是小雨又把自己现有的铅笔给了小雪和刘星一部分,结果小雪和刘星的铅笔数量也在现有的基础上增加了倍,此时刘星的铅笔当然多了,于是刘星也将自己现有的铅笔给了小雪和小雨一部分,结果也是小雪和小雨的铅笔数量在现有的基础上增加了倍,此时他们三个人各自数了数自己的铅笔,发现他们三个人的铅笔数量竟然一样多!
但最后小雪发现自己现有的铅笔数量比原来却少了支,同学们你们知道妈妈原来分别给他们三个人各多少支铅笔吗?
(2007年第五届走美五年级初赛第15题)如图,8个单位正方体拼成大正方体,沿着面上的格线,从A到B的最短路线共有()条.
整除:
六位数2003□□能被99整除,它的最后两位数是()
计算:
1-100的自然数中,最多可以选出多少个数,使得选出的数中,每两个数的和都是3的倍数?
最多可以选出多少个数,使得选出的数中,每两个数的和都不是3的倍数?
货物的重量:
商店里有六箱重量不等的货物,分别装货15、16、18、19、20、31千克,有两位顾客买走了其中的5箱货物,而且一个顾客买的货物的重量是另一个顾客买的货物的2倍,问:
商店剩下的一箱货物的重量是多少?
小明家与学校相距6千米.每天小明都以一定的速度骑自行车去学校,恰好在上课前5分钟赶到。
这天,小明比平时晚出发了10分钟,于是他提速骑车,结果在上课前1分钟赶到了学校。
已知小明提速后的速度是平时的1.5倍。
小明平时骑车的速度是每小时多少千米?
把20个苹果分给3个小朋友,每人最少分3个,可以有多少种不同的分法?
数字推理问题:
(高等难度) 用1、2、3、4、6、7、8、9这8个数组成的2个四位数,使这两个数的差最小(大减小),这个差最小是多少?
图形:
(高等难度) 如图,长方形ABCD中,E为的AD中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG.
图形面积:
(高等难度) 直角三角形ABC的两直角边AC=8cm,BC=6cm,以AC、BC为边向形外分别作正方形ACDE与BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点T.问:
图中阴影部分(与梯形BTFG)的总面积等于多少?
应用题:
(高等难度) 我国某城市煤气收费规定:
每月用量在8立方米或8立方米以下都一律收6.9元,用量超过8立方米的除交6.9元外,超过部分每立方米按一定费用交费,某饭店1月份煤气费是82.26元,8月份煤气费是40.02元,又知道8月份煤气用量相当于1月份的,那么超过8立方米后,每立方米煤气应收多少元?
乒乓球训练(逻辑):
(高等难度) 甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判.每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局.那么整个训练中的第3局当裁判的是_______.
唐老鸭和米老师赛跑:
(高等难度) 唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米。
唐老鸭手中掌握一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n次指令,米老鼠就以原来速度的n×
10%倒退一分钟,然后再按原来的速度继续前进。
如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少是_____次。
逻辑推理:
(高等难度) 数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:
小明得金牌;
小华不得金牌;
小强不得铜牌."
结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。
一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?
牛吃草:
(高等难度) 一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;
6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?
奇偶性应用:
(高等难度) 在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝.最后统计有1987次染红,1987次染蓝.求证至少有一珠子被染上过红、蓝两种颜色。
整除问题:
(高等难度) 一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数。