第二章 函数概念与基本初等函数第二章 21Word文档下载推荐.docx

上传人:b****1 文档编号:13499487 上传时间:2022-10-11 格式:DOCX 页数:31 大小:267.07KB
下载 相关 举报
第二章 函数概念与基本初等函数第二章 21Word文档下载推荐.docx_第1页
第1页 / 共31页
第二章 函数概念与基本初等函数第二章 21Word文档下载推荐.docx_第2页
第2页 / 共31页
第二章 函数概念与基本初等函数第二章 21Word文档下载推荐.docx_第3页
第3页 / 共31页
第二章 函数概念与基本初等函数第二章 21Word文档下载推荐.docx_第4页
第4页 / 共31页
第二章 函数概念与基本初等函数第二章 21Word文档下载推荐.docx_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

第二章 函数概念与基本初等函数第二章 21Word文档下载推荐.docx

《第二章 函数概念与基本初等函数第二章 21Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《第二章 函数概念与基本初等函数第二章 21Word文档下载推荐.docx(31页珍藏版)》请在冰豆网上搜索。

第二章 函数概念与基本初等函数第二章 21Word文档下载推荐.docx

列表法、图象法、解析法.

(2)分段函数:

在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.

概念方法微思考

请你概括一下求函数定义域的类型.

提示 

(1)分式型;

(2)根式型;

(3)对数式型;

(4)指数函数、对数函数型;

(5)三角函数型.

题组一 思考辨析

1.判断下列结论是否正确(请在括号中打“√”或“×

”)

(1)对于函数f:

A→B,其值域就是集合B.( ×

 )

(2)若两个函数的定义域与值域相同,则这两个函数相等.( ×

(3)函数f(x)的图象与直线x=1最多有一个交点.( √ )

(4)若A=R,B={x|x>

0},f:

x→y=|x|,其对应是从A到B的映射.( ×

(5)分段函数是由两个或几个函数组成的.( ×

题组二 教材改编

2.函数f(x)=

的定义域是________.

答案 (-∞,1)∪(1,4]

3.函数y=f(x)的图象如图所示,那么,f(x)的定义域是________;

值域是________;

其中只有唯一的x值与之对应的y值的范围是________.

答案 [-3,0]∪[2,3] [1,5] [1,2)∪(4,5]

题组三 易错自纠

4.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列各对应关系f不能表示从P到Q的函数的是________.(填序号)

①f:

x→y=

x;

②f:

③f:

④f:

.

答案 ③

解析 对于③,因为当x=4时,y=

×

4=

∉Q,所以③不是从P到Q的函数.

5.已知f(

)=x-1,则f(x)=____________.

答案 x2-1(x≥0)

解析 令t=

,则t≥0,x=t2,所以f(t)=t2-1(t≥0),即f(x)=x2-1(x≥0).

6.设函数f(x)=

则使得f(x)≥1的自变量x的取值范围为___________.

答案 (-∞,-2]∪[0,10]

解析 ∵f(x)是分段函数,∴f(x)≥1应分段求解.当x<

1时,f(x)≥1⇒(x+1)2≥1⇒x≤-2或x≥0,∴x≤-2或0≤x<

1.当x≥1时,f(x)≥1⇒4-

≥1,即

≤3,∴1≤x≤10.综上所述,x≤-2或0≤x≤10,即x∈(-∞,-2]∪[0,10].

题型一 函数的定义域

命题点1 求函数的定义域

例1 

(1)(2018·

江苏)函数f(x)=

的定义域为________.

答案 {x|x≥2}

解析 由log2x-1≥0,即log2x≥log22,解得x≥2,

满足x>

0,

所以函数f(x)=

的定义域为{x|x≥2}.

(2)函数f(x)=

ln

的定义域为________________.

答案 [-4,0)∪(0,1)

解析 由

解得-4≤x<

0或0<

x<

1,故函数f(x)的定义域为[-4,0)∪(0,1).

(3)若函数y=f(x)的定义域是[0,2020],则函数g(x)=

的定义域是(  )

A.[-1,2019]B.[-1,1)∪(1,2019]

C.[0,2020]D.[-1,1)∪(1,2020]

答案 B

解析 使函数f(x+1)有意义,则0≤x+1≤2020,解得-1≤x≤2019,故函数f(x+1)的定义域为[-1,2019].所以函数g(x)有意义的条件是

解得-1≤x<

1或1<

x≤

2019.故函数g(x)的定义域为[-1,1)∪(1,2019].

引申探究

本例(3)中,若将“函数y=f(x)的定义域为[0,2020]”,改为“函数f(x-1)的定义域为

[0,2020]”,则函数g(x)=

答案 [-2,1)∪(1,2018]

解析 由函数f(x-1)的定义域为[0,2020],

得函数y=f(x)的定义域为[-1,2019],

 则-2≤x≤2018且x≠1.

所以函数g(x)的定义域为[-2,1)∪(1,2018].

命题点2 已知定义域求参数的值或范围

例2 

(1)若函数f(x)=

的定义域为{x|1≤x≤2},则a+b的值为________.

答案 -

解析 函数f(x)的定义域是不等式ax2+abx+b≥0的解集.不等式ax2+abx+b≥0的解集为{x|1≤x≤2},

所以

解得

所以a+b=-

-3=-

(2)设f(x)的定义域为[0,1],要使函数f(x-a)+f(x+a)有定义,则a的取值范围为____________.

答案 

解析 函数f(x-a)+f(x+a)的定义域为[a,1+a]∩[-a,1-a],当a≥0时,应有a≤1-a,即0≤a≤

当a<

0时,应有-a≤1+a,即-

≤a<

0.所以a的取值范围是

思维升华

(1)求给定函数的定义域往往转化为解不等式(组)的问题,可借助于数轴,注意端点值的取舍.

(2)求抽象函数的定义域

①若y=f(x)的定义域为(a,b),则解不等式a<

g(x)<

b即可求出y=f(g(x))的定义域;

②若y=f(g(x))的定义域为(a,b),则求出g(x)在(a,b)上的值域即得f(x)的定义域.

(3)已知函数定义域求参数的值或范围,可将问题转化成含参数的不等式,然后求解.

跟踪训练1

(1)若函数y=f(x)的定义域为[0,2],则函数g(x)=

A.[0,1)B.[0,1]

C.[0,1)∪(1,4]D.(0,1)

答案 A

解析 函数y=f(x)的定义域是[0,2],要使函数g(x)有意义,可得

解得0≤x<

1,故选A.

(2)函数y=ln

答案 (0,1]

解析 函数的定义域满足

∴0<

x≤1.

(3)记函数f(x)=

的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<

1)的定义域为B.若B⊆A,则实数a的取值范围为________________.

答案 (-∞,-2]∪

解析 由已知得A={x|x<

-1或x≥1},B={x|(x-a-1)(x-2a)<

0},由a<

1得a+1>

2a,∴B={x|2a<

a+1}.∵B⊆A,∴a+1≤-1或2a≥1,∴a≤-2或

1.∴a的取值范围为a≤-2或

1.

题型二 求函数的解析式

1.若f

,则当x≠0,且x≠1时,f(x)等于(  )

A.

B.

C.

D.

-1

解析 f(x)=

(x≠0且x≠1).

2.已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,则f(x)=________.

x2-

x+2

解析 设f(x)=ax2+bx+c(a≠0),

由f(0)=2,得c=2,

f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=x-1,即2ax+a+b=x-1,

∴f(x)=

x+2.

3.定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),则f(x)=________________.

lg(x+1)+

lg(1-x)(-1<

1)

解析 当x∈(-1,1)时,有2f(x)-f(-x)=lg(x+1).①

将x换成-x,则-x换成x,得

2f(-x)-f(x)=lg(-x+1).②

由①②消去f(-x)得,f(x)=

1).

思维升华函数解析式的求法

(1)待定系数法:

若已知函数的类型,可用待定系数法;

(2)换元法:

已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;

(3)配凑法:

由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的解析式;

(4)消去法:

已知f(x)与f

或f(-x)之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).

题型三 常见函数的值域

求下列函数的值域:

(1)y=3x2-x+2,x∈[1,3];

(2)y=

(3)y=x+4

(4)y=

解 

(1)(配方法)

因为y=3x2-x+2=3

2+

所以函数y=3x2-x+2在[1,3]上单调递增.

当x=1时,原函数取得最小值4;

当x=3时,原函数取得最大值26.

所以函数y=3x2-x+2(x∈[1,3])的值域为[4,26].

(2)(分离常数法)

y=

=3+

因为

≠0,所以3+

≠3,

所以函数y=

的值域为{y|y≠3}.

(3)(换元法)

设t=

,t≥0,则x=1-t2,

所以原函数可化为y=1-t2+4t=-(t-2)2+5(t≥0),所以y≤5,

所以原函数的值域为(-∞,5].

(4)(均值不等式法)

=x+

=x-

因为x>

,所以x-

>

所以x-

≥2

当且仅当x-

,即x=

时取等号.

所以y≥

,即原函数的值域为

思维升华配方法、分离常数法和换元法是求函数值域的有效方法,但要注意各种方法所适用的函数形式,还要注意函数定义域的限制.换元法多用于无理函数,换元的目的是进行化归,把无理式转化为有理式来解.二次分式型函数求值域,多采用分离出整式再利用均值不等式求解.

题型四 分段函数

命题点1 求分段函数的函数值

例3

(1)已知f(x)=

且f(0)=2,f(-1)=3,则f(f(-3))等于(  )

A.-2B.2C.3D.-3

解析 由题意得f(0)=a0+b=1+b=2,解得b=1;

f(-1)=a-1+b=a-1+1=3,解得a=

故f

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 其它语言学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1