反激式开关变压器都的通俗讲解及实例计算文档格式.docx

上传人:b****3 文档编号:13463535 上传时间:2022-10-10 格式:DOCX 页数:18 大小:333.59KB
下载 相关 举报
反激式开关变压器都的通俗讲解及实例计算文档格式.docx_第1页
第1页 / 共18页
反激式开关变压器都的通俗讲解及实例计算文档格式.docx_第2页
第2页 / 共18页
反激式开关变压器都的通俗讲解及实例计算文档格式.docx_第3页
第3页 / 共18页
反激式开关变压器都的通俗讲解及实例计算文档格式.docx_第4页
第4页 / 共18页
反激式开关变压器都的通俗讲解及实例计算文档格式.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

反激式开关变压器都的通俗讲解及实例计算文档格式.docx

《反激式开关变压器都的通俗讲解及实例计算文档格式.docx》由会员分享,可在线阅读,更多相关《反激式开关变压器都的通俗讲解及实例计算文档格式.docx(18页珍藏版)》请在冰豆网上搜索。

反激式开关变压器都的通俗讲解及实例计算文档格式.docx

从图上可以看出DCM的Vds也是由VIN和VF组成,只不过有一段时间VF为0,这段时候是初级电流降为0,次级电流也降为0。

那么到底反激变化器怎么区分是工作在连续模式(CCM)还是非连续模式(DCM)?

是看初级电感电流是否降到0为分界点吗,NO,反激变换器的CCM和DCM分界点不是按照初级电感电流是否到0来分界的,而是根据初次级的电流是否到0来分界的。

如图所示

从图上可以看出只要初级电流和次级电流不同时为零,就是连续模式(CCM);

只要初级电流和次级电流同时为零,便是不连续模式(DCM);

介于这俩之间的是过度模式,也叫临界模式(CRM)。

以上说的都是理想情况,但实际应用中变压器是存在漏感的(漏感的能量是不会耦合到次级的),MOS管也不是理想的开关,还有PCB板的布局及走线带来的杂散电感,使得MOS的Vds波形往往大于VIN+VF。

类似于下图

这个图是一个48V输入的反激电源。

从图上看到MOS的Vds有个很大的尖峰,我用的200V的MOS,尖峰到了196了。

这是尖峰是由于漏感造成的,上边说到漏感的能量不能耦合到次级,那么MOS关断的时候,漏感电流也不能突变,所以会产生个很高的感应电动势,因无法耦合到次级,会产生个很高的电压尖峰,可能会超过MOS的耐压值而损坏MOS管,所以我们实际使用时会在初级加一个RCD吸收电路,把尖峰尽可能的吸到最低值,来确保MOS管工作在安全电压。

具体RCD吸收电路图如下

简单分析下工作原理

1.当开关S开通时,二极管D反骗而截止。

电感储存能量。

2.当开关S关断时,电感电压反向,把漏感能量储存在C中,然后通过R释放掉。

细心的朋友可能会发现,当开关关断的时候,这个RCD电路和次级的电路是一模一样的,D整流,C滤波。

R相当于负载。

只不过输出电压不是VO,而变成了次级反射到初级的电压VF。

所以,注意了,R的值不能取得太小,太小了损耗严重,影响效率。

而且电阻的功率会变的很大!

下边来个加了RCD吸收的波形

关于RCD吸收的选取,如下面叙述:

方法一

先上个RCD钳位的原理图

再上个MOS的VDS波形

下面再说几个名词,这几个名词其实大家也知道,一个是钳位电压,上边用Vsn表示;

一个是折射电压,上边用VRO表示;

还有个脉动电压,上边用ΔV表示;

MOS管的最大耐压,上边用BVdss表示;

电源的最高输入电压,上边用Vinmax表示。

1.钳位电压Vsn是电容C两端的电压,与选用MOS的BVdss及最高输入电压以及降额系数有关,一般在最高输入电压Vinmax下考虑0.9的降额,则有

Vsn=0.9*BVdss-Vinmax(我上边的实验选择的MOS为IRF640,BVdss=200V,Vinmax=70V)

可以算出钳位电压Vsn为110V

2.然后算折射电压VRO,根据VRO=(VOUT+VD)/(NS/NP)

式中VOUT为输出电压

VD为二极管管压降

NS为次级匝数

NP为初级匝数

我的初级NP为31匝,次级NS为10匝,管压降VD≈1V,输出电压VOUT=12V

算出VRO=(12+1)/(10/31)=40V

3.确定漏感量LIK,这个可以通过测试得出,我的实测了下为2.79uH;

不过可以估测此漏感值,一般为初级电感量的1%-5%;

4.确定峰值电流IPK的值

输入功率PIN=POUT/η,

式中POUT为输出功率

η为效率

我的输出电压为12V,电流为3A,假设效率为80%;

代入式中得PIN=12*3/0.8=45W

算出平均电流Iin-avg=PIN/Vinmin

式中Vinmin为最小输入电压

我的最小输入是40V,也就是1207的最低输入电压。

代入式得Iin-avg=45/40=1.125A

确定峰值电流IPK=2*Iin-avg/δmax

式中δmax为最大占空比

我的设的为0.5

代入式得IPK=2*1.125/0.5=4.2A

5.确定钳位电阻R的值,根据公式R=2(Vsn-VRO)*Vsn/LIK*IPK*IPK*fs

式中fs为开关频率

IPK*IPK为IPK的平方,俺不会写

6.确定R的功率PR=Vsn*Vsn/R

7.确定钳位电容C的值

我们前边一直把C的点电压VC当成不变的处理,实际是有波动的,因为有漏感等杂散电感的影响,所以会有所波动,一般这个脉动电压ΔV取钳位电压Vsn的5%-10%,我们这取10%吧,所以ΔV=11V

钳位电容的值C=Vsn/ΔV*R*fs

回头我把实验结果和波形放上来!

1.初级用了C=103R=30K,次级R=22R,C=102,峰峰值160V

2.我把初级R又并了个30K,R=15K了,别的没动,峰峰值150V了

我又把初级C=103改为472,R=15K,次级没动,峰峰值又到138V了

我想看看要是不动电阻呢,按算的来,把并的那个30K去掉,C=472,次级不动,峰峰值150V

以上总结,算出来的结果还得再试验中得到验证,只能做个参考;

所以我们应以计算为基础,根据实验来回调整,找到一个更适合你的值。

还有吸收电阻R一定要考虑降额使用,满足功率要求。

方法二

先做如下假设:

①开关电源的工作频率范围:

20~200KHZ;

②RCD中的二极管正向导通时间很短(一般为几十纳秒);

③在调整RCD回路前主变压器和MOS管,输出线路的参数已经完全确定。

有了以上几个假设我们就可以先进行计算:

一﹑首先对MOS管的VD进行分段:

ⅰ,输入的直流电压Vin(DC);

ⅱ,次级反射初级的VF;

ⅲ,主MOS管VD余量VDS;

ⅳ,RCD吸收有效电压VRCD1。

二﹑对于以上主MOS管VD的几部分进行计算:

ⅰ,输入的直流电压Vin(DC)。

在计算Vin(DC)时,是依最高输入电压值为准。

如输入电压为AC220V,最高电压应选择AC265V,即DC375V。

Vin(DC)=VAC*√2

ⅱ,次级反射初级的VF。

VF是依在次级输出最高电压,整流二极管压降最大时计算的,如输出电压为:

5.0V±

5%(依Vo=5.25V计算),二极管Vf为0.525V(此值是在1N5822的资料中查找额定电流下Vf值).

VF=(Vf+Vout)*Np/Ns

ⅲ,主MOS管VD的余量VDS.

VDS是依MOS管VD的10%为最小值.如KA05H0165R的VD=650应选择DC65V.

VDS=VD*10%

ⅳ,RCD吸收VRCD.

MOS管的VD减去ⅰ,ⅲ三项就剩下VRCD的最大值。

实际选取的VRCD应为最大值的90%(这里主要是考虑到开关电源各个元件的分散性,温度漂移和时间飘移等因素得影响)。

VRCD=(VD-Vin(DC)-VDS)*90%

注意:

①VRCD是计算出理论值,再通过实验进行调整,使得实际值与理论值相吻合.

②VRCD必须大于VF的1.3倍.(如果小于1.3倍,则主MOS管的VD值选择就太低了)

③MOS管VD应当小于Vin(DC)的2倍.(如果大于2倍,则主MOS管的VD值就过大了)

④如果VRCD的实测值小于VF的1.2倍,那么RCD吸收回路就影响电源效率。

⑤VRCD是由VRCD1和VF组成的

ⅴ,RC时间常数τ确定.

τ是依开关电源工作频率而定的,一般选择10~20个开关电源周期。

三﹑试验调整VRCD值

首先假设一个RC参数,R=100K/RJ15,C=10nF/1KV。

再上市电,应遵循先低压后高压,再由轻载到重载的原则。

在试验时应当严密注视RC元件上的电压值,务必使VRCD小于计算值。

如发现到达计算值,就应当立即断电,待将R值减小后,重复以上试验。

(RC元件上的电压值是用示波器观察的,示波器的地接到输入电解电容“+”极的RC一点上,测试点接到RC另一点上)。

一个合适的RC值应当在最高输入电压,最重的电源负载下,VRCD的试验值等于理论计算值。

四﹑试验中值得注意的现象

输入电网电压越低VRCD就越高,负载越重VRCD也越高。

那么在最低输入电压,重负载时VRCD的试验值如果大于以上理论计算的VRCD值,是否和(三)的内容相矛盾哪?

一点都不矛盾,理论值是在最高输入电压时的计算结果,而现在是低输入电压。

重负载是指开关电源可能达到的最大负载。

主要是通过试验测得开关电源的极限功率。

五﹑RCD吸收电路中R值的功率选择

R的功率选择是依实测VRCD的最大值,计算而得。

实际选择的功率应大于计算功率的两倍。

RCD吸收电路中的R值如果过小,就会降低开关电源的效率。

然而,如果R值如果过大,MOS管就存在着被击穿的危险。

下面讲下变压器的设计方法

变压器的设计方法有多种,个人感觉适合自己的才是最好的,选择一个你自己最熟悉的,能够理解的才是最好的!

我先介绍下一种设计方法:

1.先确定输入电压,一般是按照最低输入直流电压计算VINmin计算

a.要是直流输入按直流的最低输入来计算;

b.要是输入为交流电,一般对于单相交流整流用电容滤波,直流电压不会超过交流输入电压有效值的1.4倍,也不低于1.2倍。

列如,全范围交流输入85-265VAC的电源,一般按85VAC时计算,那VINmin=85*1.2=102V,一般会取整数按100VDC计算。

2.确定导通时间ton

导通时间ton=T*D

T为周期T=1/f

D为最大占空比,一般在最低输入电压的时候,D会最大,保证输出稳定。

注意大的占空比可以降低初级的电流有效值,和MOS的导通损耗,但是根据伏秒法则,初级占空比大了,次级的肯定会小,那么次级的峰值电流会变大(IPK=2*Iin-avg/δmax),电流有效值变大,会导致输出纹波变大!

所以,一般单端反激拓扑的占空比选取不要超过0.5。

而且一般的电流控制模式,占空比大于0.5要加斜率补偿的,对调试是个难度。

还有一重要的是你的占空比决定你的匝比,匝比决定啥,嘿嘿,反射电压VF,忘了再去上边看下,再加上你漏感引起的尖峰,最终影响你MOS的耐压。

占空比越小匝比越小,反射电压VF越低,MOS的电压应力小。

反之MOS的电压应力大,所以占空比要考虑好了。

要保证在最高电压下你的VDS电压在MOS的规定电压以下,最好是降额使用,流出足够的余量来!

列如,电源的开关频率为100K,最低输入时的最大占空比为0.4,那T=1/100000=10μS,那么ton=0.4*10μS=4μS。

3.确定磁芯的有效面积AE

AE一般会在磁芯的资料中给出。

4.计算初级匝数NP

NP=VINmin*ton/ΔB*AE

式中VINmin为直流最低输入电压;

ton为导通时间

AE为磁芯的有效面积

ΔB为磁感应强度变化量,这个值和磁芯材质,及温升等有关,一般靠经验来选取,在0.1-0.3之间,取得越大,余量越小,变压器在极端情况下越容易饱和!

俺一般取0.2。

5.计算次级匝

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1