公务员考试行测数量关系49个常见问题公式法巧解经典无水印Word文件下载.docx
《公务员考试行测数量关系49个常见问题公式法巧解经典无水印Word文件下载.docx》由会员分享,可在线阅读,更多相关《公务员考试行测数量关系49个常见问题公式法巧解经典无水印Word文件下载.docx(24页珍藏版)》请在冰豆网上搜索。
(x-3)次手。
但是没2个人之间的握手都重复计算了1次。
则实际的握手次数是x×
(x-3)÷
2=152计算的x=19人
三,钟表重合公式
钟表几分重合,公式为:
x/5=(x+a)/60a时钟前面的格数
四,时钟成角度的问题
设X时时,夹角为30X,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)
钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。
1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)
变式与应用
2.【30X-5.5Y】=A或360-【30X-5.5Y】=A(已知角度或时针或分针求其中一个角)
五,往返平均速度公式及其应用(引用)
某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b)。
证明:
设A、B两地相距S,则
往返总路程2S,往返总共花费时间s/a+s/b
故v=2s/(s/a+s/b)=2ab/(a+b)
六,空心方阵的总数
空心方阵的总数=(最外层边人(物)数-空心方阵的层数)×
空心方阵的层数×
4
=最外层的每一边的人数^2-(最外层每边人数-2*层数)^2
=每层的边数相加×
4-4×
层数
空心方阵最外层每边人数=总人数/4/层数+层数
方阵的基本特点:
①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层边上的人数就少2;
②每边人(或物)数和四周人(或物)数的关系:
③中实方阵总人(或物)数=(每边人(或物)数)2=(最外层总人数÷
4+1)2
例:
①某部队排成一方阵,最外层人数是80人,问方阵共有多少官兵?
(441人)
②某校学生刚好排成一个方队,最外层每边的人数是24人,问该方阵有多少名学生?
(576名)解题方法:
方阵人数=(外层人数÷
4+1)2=(每边人数)2
③参加中学生运动会团体操比赛的运动员排成了一个正方形队列。
如果要使这个正方形队列减少一行和一列,则要减少33人。
问参加团体操表演的运动员有多少人?
(289人)
解题方法:
去掉的总人数=原每行人数×
2-1=减少后每行人数×
2+1
典型例题:
某个军队举行列队表演,已知这个长方形的队阵最外围有32人,若以长和宽作为边长排出2个正方形的方阵需要180人。
则原来长方形的队阵总人数是()
A、64,B、72C、96D、100
【解析】这个题目经过改编融合了代数知识中的平方和知识点。
长方形的(长+宽)×
2=32+4得到长+宽=18。
可能这里面大家对于长+宽=18有些难以计算。
你可以假设去掉4个点的人先不算。
长+宽(不含两端的人)×
2+4(4个端点的人)=32,则计算出不含端点的长+宽=14考虑到各自的2端点所以实际的长宽之和是14+2+2=18。
求长方形的人数,实际上是求长×
宽。
根据条件长×
长+宽×
宽=180综合(长+宽)的平方=长×
宽+2×
长×
宽=18×
18带入计算即得到B。
其实在我们得到长宽之和为18时,我们就可以通过估算的方法得到选项B
七,青蛙跳井问题
例如:
①青蛙从井底向上爬,井深10米,青蛙每跳上5米,又滑下4米,这样青蛙需跳几次方可出井?
(6)
②单杠上挂着一条4米长的爬绳,小赵每次向上爬1米又滑下半米来,问小赵几次才能爬上单杠?
(7)
总解题方法:
完成任务的次数=井深或绳长-每次滑下米数(遇到半米要将前面的单位转化成半米)
例如第二题中,每次下滑半米,要将前面的4米转换成8个半米再计算。
完成任务的次数=(总长-单长)/实际单长+1
八,容斥原理
总公式:
满足条件一的个数+满足条件2的个数-两个都满足的个数=总个数-两个都不满足的个数
【国2006一类-42】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有多少人?
A.27人B.25人C.19人D.10人
上题就是数学运算试题当中经常会出现的“两集合问题”,这类问题一般比较简单,使用容斥原理或者简单画图便可解决。
但使用容斥原理对思维要求比较高,而画图浪费时间比较多。
鉴于此类问题一般都按照类似的模式来出,下面华图名师李委明给出一个通解公式,希望对大家解题能有帮助:
例如上题,代入公式就应该是:
40+31-x=50-4,得到x=25。
我们再看看其它题目:
【国2004A-46】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是多少?
A.22B.18C.28D.26
代入公式:
26+24-x=32-4,得到x=22
九,传球问题
这道传球问题是一道非常复杂麻烦的排列组合问题。
【李委明解三】不免投机取巧,但最有效果(根据对称性很容易判断结果应该是3的倍数,如果答案只有一个3的倍数,便能快速得到答案),也给了一个启发----
传球问题核心公式
N个人传M次球,记X=[(N-1)^M]/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数。
大家牢记一条公式,可以解决此类至少三人传球的所有问题。
四人进行篮球传接球练习,要求每人接球后再传给别人。
开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式:
A.60种B.65种C.70种D.75种
x=(4-1)^5/4x=60
十,圆分平面公式:
N^2-N+2,N是圆的个数
十一,剪刀剪绳
对折N次,剪M刀,可成M*2^n+1段
将一根绳子连续对折3次,然后每隔一定长度剪一刀,共剪6刀。
问这样操作后,原来的绳子被剪成了几段?
A.18段B.49段C.42段D.52段
十二,四个连续自然数,
性质一,为两个积数和两个偶数,它们的和可以被2整除,但是不能被4整除
性质二,他们的积+1是一个奇数的完全平方数
十三,骨牌公式
公式是:
小于等于总数的2的N次方的最大值就是最后剩下的序号
十四,指针重合公式
关于钟表指针重合的问题,有一个固定的公式:
61T=S(S为题目中最小的单位在题目所要求的时间内所走的格书,确定S后算出T的最大值知道相遇多少次。
)
十五,图色公式
公式:
(大正方形的边长的3次方)—(大正方形的边长—2)的3次方。
十六,装错信封问题
小明给住在五个国家的五位朋友分别写信,这些信都装错的情况共有多少种44种
f(n)=n!
(1-1/1!
+1/2!
!
-1/3!
......+(-1)n(1/n!
))
或者可以用下面的公式解答
装错1信0种 装错2信:
1种
3249544
递推公式是S(n)=n.S(n-1)+(-1)^n~~~~~
如果是6封信装错的话就是265~~~~
十七,伯努利概率模型
某人一次涉及击中靶的概率是3/5,设计三次,至少两次中靶的概率是
集中概率3/5,则没集中概率2/5,即为两次集中的概率+三次集中的概率
公式为C(2,3)*[(3/5)^2]*[(2/5)^1]+C(3,3)[(3/5)^3]*[(2/5)^0]
81/125
十八,圆相交的交点问题
N个圆相交最多可以有多少个交点的问题分析N*(N-1)
十九,约数个数问题
M=A^X*B^Y则M的约数个数是
(X+1)(Y+1)
360这个数的约数有多少个?
这些约数的和是多少?
解〕360=2×
2×
3×
5,所以360的任何一个约数都等于至多三个2(可以是零个,下同),至多两个3和至多一个5的积。
如果我们把下面的式子
(1+2+4+8)×
(1+3+9)×
(1+5)
展开成一个和式,和式中的每一个加数都是在每个括号里各取一个数相乘的积。
由前面的分析不难看出,360的每一个约数都恰好是这个展开式中的一个加数。
由于第一个括号里有4个数,第二个括号里有3个数,第三个括号里有2个数,所以这个展开式中的加数个数为4×
2=24,而这也就是360的约数的个数。
另一方面,360的所有约数的和就等于这个展开式的和,因而也就等于
(1+2+4+8)×
(1+5)=15×
13×
6=1,170
答:
360的约数有24个,这些约数的和是1,170。
甲数有9个约数,乙数有10个约数,甲、乙两数最小公倍数是2800,那么甲数和乙数分别是多少?
解:
一个整数被它的约数除后,所得的商也是它的约数,这样的两个约数可以配成一对.只有配成对的两个约数相同时,也就是这个数是完全平方数时,它的约数的个数才会是奇数.因此,甲数是一个完全平方数.
2800=24×
52×
7.
在它含有的约数中是完全平方数,只有
1,22,24,52,22×
52,24×
52.
在这6个数中只有22×
52=100,它的约数是(2+1)×
(2+1)=9(个).
2800是甲、乙两数的最小公倍数,上面已算出甲数是100=22×
52,因此乙数至少要含有24和7,而24×
7=112恰好有(4+1)×
(1+1)=10(个)约数,从而乙数就是112.综合起来,甲数是100,乙数是112.
二十,吃糖的方法
当有n块糖时,有2^(n-1)种吃法。
二十一,隔两个划数
1987=3^6+12581258÷
3+1=1888
即剩下的是1888减去1能被3整除
二十二,边长求三角形的个数
三边均为整数,且最长边为11的三角形有多少个?
[asdfqwer]的最后解答:
11,11,11;
11,11,10;
11,11,9;
...11,11,1;
11,10,10;
11,10,9;
...11,10,2;
11,9,9;
...11,9,3;
11,8,8;
...11,8,4;
11,7,7,...11,7,5;
11,6,6;
1+3+5+7+9+11=6^2=36
如果将11改为n的话,
n=2k-1时,为k^2个三角形;
n=2k时,为(k+1)k个三