压杆稳定计算docWord文档格式.docx

上传人:b****0 文档编号:13352659 上传时间:2022-10-10 格式:DOCX 页数:28 大小:678.84KB
下载 相关 举报
压杆稳定计算docWord文档格式.docx_第1页
第1页 / 共28页
压杆稳定计算docWord文档格式.docx_第2页
第2页 / 共28页
压杆稳定计算docWord文档格式.docx_第3页
第3页 / 共28页
压杆稳定计算docWord文档格式.docx_第4页
第4页 / 共28页
压杆稳定计算docWord文档格式.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

压杆稳定计算docWord文档格式.docx

《压杆稳定计算docWord文档格式.docx》由会员分享,可在线阅读,更多相关《压杆稳定计算docWord文档格式.docx(28页珍藏版)》请在冰豆网上搜索。

压杆稳定计算docWord文档格式.docx

当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。

因此,小球原有的干衡状态是不稳定平衡。

第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。

因此。

我们称小球原有的平衡状态为随遇平衡。

图16-5

图16-6

通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。

在研究压杆稳定时,我们也用一微小横向干扰力使处于直线平衡状态的压杆偏离原有的位置,如图16-6a所示。

当轴向压力F由小变大的过程中,可以观察到:

1)当压力值F1较小时,给其一横向干扰力,杆件偏离原来的平衡位置。

若去掉横向干扰力后,压杆将在直线平衡位置左右摆动,最终将恢复到原来的直线平衡位置,如图16-6b所示。

所以,该杆原有直线平衡状态是稳定平衡。

2)当压力值F2超过其一限度Fcr时,平衡状态的性质发生了质变。

这时,只要有一轻微的横向干扰,压杆就会继续弯曲,不再恢复原状,如图16-6d所示。

因此,该杆原有直线平衡状态是不稳定平衡。

3)界于前二者之间,存在着一种临界状态。

当压力值正好等于Fcr时,一旦去掉横向干扰力,压杆将在微弯状态下达到新的平衡,既不恢复原状,也不再继续弯曲,如图16-6c所示。

因此,该杆原有直线平衡状态是随遇平衡,该状态又称为临界状态。

临界状态是杆件从稳定平衡向不稳定平衡转化的极限状态。

压杆处于临界状态时的轴向压力称为临界力或临界载荷,用Fcr表示。

由上述可知,压杆的原有直线平衡状态是否稳定,与所受轴向压力大小有关。

当轴向压力达到临界力时,压杆即向失稳过渡。

所以,对于压杆稳定性的研究,关键在于确定压杆的临界力。

16.2两端铰支细长压杆的临界力

图16-7a为一两端为球形铰支的细长压杆,现推导其临界力公式。

图16-7

根据前节的讨论,轴向压力到达临界力时,压杆的直线平衡状态将由稳定转变为不稳定。

在微小横向干扰力解除后,它将在微弯状态下保持平衡。

因此,可以认为能够保持压杆在微弯状态下平衡的最小轴向压力,即为临界力。

选取坐标系如图l6-7a所示,假想沿任意截面将压杆截开,保留部分如图16-7b所示。

由保留部分的平衡得

(a)

在式(a)中,轴向压力Fcr取绝对值。

这样,在图示的坐标系中弯矩

与挠度

的符号总相反,故式(a)中加了一个负号。

当杆内应力不超过材料比例极限时,根据挠曲线近似微分方程有

(b)

由于两端是球铰支座,它对端截面在任何方向的转角都没有限制。

因而,杆件的微小弯曲变形一定发生于抗弯能力最弱的纵向平面内,所以上式中的I应该是横截面的最小惯性矩。

(c)

式(b)可改写为

(d)

此微分方程的通解为

(e)

式中

为积分常数。

由压杆两端铰支这一边界条件

(f)

(g)

将式(f)代入式(e),得

,于是

(h)

式(g)代入式(h),有

(i)

在式(i)中,积分常数

不能等于零,否则将使有

,这意味着压杆处于直线平衡状态,与事先假设压杆处于微弯状态相矛盾,所以只能有

(j)

由式(j)解得

(k)

(l)

因为n可取0,1,2,…中任一个整数,所以式

(1)表明,使压杆保持曲线形态平衡的压力,在理论上是多值的。

而这些压力中,使压杆保持微小弯曲的最小压力,才是临界力。

取n=0,没有意义,只能取n=1。

于是得两端铰支细长压杆临界力公式

(16-1)

式(16-1)又称为欧拉公式。

在此临界力作用下,

,则式(h)可写成

(m)

可见,两端铰支细长压杆在临界力作用下处于微弯状态时的挠曲线是条半波正弦曲线。

代入式(m),可得压杆跨长中点处挠度,即压杆的最大挠度

是任意微小位移值。

之所以没有一个确定值,是因为式(b)中采用了挠曲线的近似微分方程式。

如果采用挠曲线的精确微分方程式,那么

值便可以确定。

这时可得到最大挠度

与压力F之间的理论关系,如图16-8的OAB曲线。

此曲线表明,当压力小于临界力

时,F与

之间的关系是直线OA,说明压杆一直保持直线平衡状态。

当压力超过临界力

时,压杆挠度急剧增加。

图16-8

在以上讨论中,假设压杆轴线是理想直线,压力F是轴向压力,压杆材料均匀连续。

这是一种理想情况,称为理想压杆。

但工程实际中的压杆并非如此。

压杆的轴线难以避免有一些初弯曲,压力也无法保证没有偏心,材料也经常有不均匀或存在缺陷的情况。

实际压杆的这些与理想压杆不符的因素,就相当于作用在杆件上的压力有一个微小的偏心距e。

试验结果表明,实际压杆的F与

的关系如图16-8中的曲线OD表示,偏心距愈小,曲线OD愈靠近OAB。

16.3不同杆端约束细长压杆的临界力

压杆临界力公式(16-1)是在两端铰支的情况下推导出来的。

由推导过程可知,临界力与约束有关。

约束条件不同,压杆的临界力也不相同,即杆端的约束对临界力有影响。

但是,不论杆端具有怎样的约束条件,都可以仿照两端铰支临界力的推导方法求得其相应的临界力计算公式,这里不详细讨论,仅用类比的方法导出几种常见约束条件下压杆的临界力计算公式。

16.3.1一端固定另一端自由细长压杆的临界力

图16-9为—端固定另一端自由的压杆。

当压杆处于临界状态时,它在曲线形式下保持平衡。

将挠曲线AB对称于固定端A向下延长,如图中假想线所示。

延长后挠曲线是一条半波正弦曲线,与本章第二节中两端铰支细长压杆的挠曲线一样。

所以,对于—端固定另一端自由且长为

的压杆,其临界力等于两端铰支长为

的压杆的临界力,即

图16-9图16-10图16-11

16.3.2两端固定细长压杆的临界力

在这种杆端约束条件下,挠曲线如图16-10所示。

该曲线的两个拐点C和D分别在距上、下端为

处。

居于中间的

长度内,挠曲续是半波正弦曲线。

所以,对于两端固定且长为

16.3.3一端固定另一端铰支细长压杆的临界力

在这种杆端约束条件下,挠曲线形状如图16-11所示。

在距铰支端B为

处,该曲线有一个拐点C。

因此,在

长度内,挠曲线是一条半波正弦曲线。

所以,对于一端固定另一端铰支且长为

综上所述,只要引入相当长度的概念,将压杆的实际长度转化为相当长度,便可将任何杆端约束条件的临界力统一写

(16-2)

称为欧拉公式的一般形式。

由式(16-2)可见,杆端约束对临界力的影响表现在系数

上。

为长度系数,

为压杆的相当长度,表示把长为

的压杆折算成两端铰支压杆后的长度。

几种常见约束情况下的长度系数

列入表16-1中。

表16-1压杆的长度系数

压杆的约束条件

长度系数

两端铰支

一端固定,另一端自由

两端固定

一端固定,另一端铰支

=1

=2

=1/2

≈0.7

表16-1中所列的只是几种典型情况,实际问题中压杆的约束情况可能更复杂,对于这些复杂约束的长度系数可以从有关设计手册中查得。

16.4欧拉公式的适用范围经验公式

16.4.1临界应力和柔度

将式(16-2)的两端同时除以压杆横截面面积A,得到的应力称为压杆的临界应力

引入截面的惯性半径

(16-3)

将上式代入式(a),得

若令

(16-4)

则有

(16-5)

式(16-5)就是计算压杆临界应力的公式,是欧拉公式的另一表达形式。

式中,

称为压杆的柔度或长细比,它集中反映了压杆的长度、约束条件、截面尺寸和形状等因素对临界应力的影响。

从式(16-5)可以看出,压杆的临界应力与柔度的平方成反比,柔度越大,则压杆的临界应力越低,压杆越容易失稳。

因此,在压杆稳定问题中,柔度

是一个很重要的参数。

16.4.2欧拉公式的适用范围

在推导欧拉公式时,曾使用了弯曲时挠曲线近似微分方程式

,而这个方程是建立在材料服从虎克定律基础上的。

试验已证实,当临界应力不超过材树比例极限

时,由欧拉公式得到的理论曲线与试验曲线十分相符,而当临界应力超过

时,两条曲线随着柔度减小相差得越来越大(如图16-12所示)。

这说明欧拉公式只有在临界应力不超过材料比例极限时才适用,即

图16-12

若用

表示对应于临界应力等于比例极限

时的柔度值,则

(16-6)

仅与压杆材料的弹性模量E和比例极限

有关。

例如,对于常用的Q235钢,E=200GPa,

=200MPa,代入式(16-6),得

从以上分析可以看出:

时,

,这时才能应用欧拉公式来计算压杆的临界力或临界应力。

满足

的压杆称为细长杆或大柔度杆。

16.4.3中柔度压杆的临界应力公式

在工程中常用的压杆,其柔度往往小于

实验结果表明,这种压杆丧失承载能力的原因仍然是失稳。

但此时临界应力

已大于材料的比例极限

,欧拉公式已不适用,这是超过材料比例极限压杆的稳定问题。

对于这类失稳问题,曾进行过许多理论和实验研究工作,得出理论分析的结果。

但工程中对这类压杆的技算,一般使用以试验结果为依据的经验公式。

在这里我们介绍两种经常使用的经验公式:

直线公式和抛物线公式。

1.直线公式

把临界应力与压杆的柔度表示成如下的线性关系。

(16-7)

式中a、b是与材料性质有关的系数,可以查相关手册得到。

由式(16-7)可见,临界应力

随着柔度

的减小而增大。

必须指出,直线公式虽然是以

的压杆建立的,但绝不能认为凡是

的压杆都可以应用直线公

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1