高考数学压轴题专项练习最新版.docx
《高考数学压轴题专项练习最新版.docx》由会员分享,可在线阅读,更多相关《高考数学压轴题专项练习最新版.docx(16页珍藏版)》请在冰豆网上搜索。
高考数学压轴题专项练习最新版
高考数学
压轴题型专项练习
(最新版)
一.选择题(共6小题)
1.(新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f
(1)=2,则f
(1)+f
(2)+f(3)+…+f(50)=( )
A.﹣50B.0C.2D.50
2.(新课标Ⅱ)已知F1,F2是椭圆C:
=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为( )
A.B.C.D.
3.(上海)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f
(1)的可能取值只能是( )
A.B.C.D.0
4.(浙江)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4+3=0,则|﹣|的最小值是( )
A.﹣1B.+1C.2D.2﹣
5.(浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则( )
A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1
6.(浙江)函数y=2|x|sin2x的图象可能是( )
A.B.C.D.
7.(江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为 .
8.(江苏)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为 .
9.(天津)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是 .
10.(北京)已知椭圆M:
+=1(a>b>0),双曲线N:
﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为 ;双曲线N的离心率为 .
11.(上海)已知实数x1、x2、y1、y2满足:
x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为 .
12.(上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a= .
13.(浙江)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是 .若函数f(x)恰有2个零点,则λ的取值范围是 .
14.(浙江)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m= 时,点B横坐标的绝对值最大.
15.(浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 个没有重复数字的四位数.(用数字作答)
三.解答题(共2小题)
16.(上海)设常数a∈R,函数f(x)=asin2x+2cos2x.
(1)若f(x)为偶函数,求a的值;
(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.
17.(浙江)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).
(Ⅰ)求sin(α+π)的值;
(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.
高考数学压轴题小题
参考答案与试题解析
一.选择题(共6小题)
1.(新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f
(1)=2,则f
(1)+f
(2)+f(3)+…+f(50)=( )
A.﹣50B.0C.2D.50
【解答】解:
∵f(x)是奇函数,且f(1﹣x)=f(1+x),
∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,
则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),
即函数f(x)是周期为4的周期函数,
∵f
(1)=2,
∴f
(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f
(1)=﹣2,
f(4)=f(0)=0,
则f
(1)+f
(2)+f(3)+f(4)=2+0﹣2+0=0,
则f
(1)+f
(2)+f(3)+…+f(50)=12[f
(1)+f
(2)+f(3)+f(4)]+f(49)+f(50)
=f
(1)+f
(2)=2+0=2,
故选:
C.
2.(新课标Ⅱ)已知F1,F2是椭圆C:
=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为( )
A.B.C.D.
【解答】解:
由题意可知:
A(﹣a,0),F1(﹣c,0),F2(c,0),
直线AP的方程为:
y=(x+a),
由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),
代入直线AP:
c=(2c+a),整理得:
a=4c,
∴题意的离心率e==.
故选:
D.
3.(上海)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f
(1)的可能取值只能是( )
A.B.C.D.0
【解答】解:
由题意得到:
问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.
我们可以通过代入和赋值的方法当f
(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:
B.
故选:
B.
4.(浙江)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4+3=0,则|﹣|的最小值是( )
A.﹣1B.+1C.2D.2﹣
【解答】解:
由﹣4+3=0,得,
∴()⊥(),
如图,不妨设,
则的终点在以(2,0)为圆心,以1为半径的圆周上,
又非零向量与的夹角为,则的终点在不含端点O的两条射线y=(x>0)上.
不妨以y=为例,则|﹣|的最小值是(2,0)到直线的距离减1.
即.
故选:
A.
5.(浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则( )
A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1
【解答】解:
∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.
过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,
连接SN,
取AB中点M,连接SM,OM,OE,则EN=OM,
则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.
显然,θ1,θ2,θ3均为锐角.
∵tanθ1==,tanθ3=,SN≥SO,
∴θ1≥θ3,
又sinθ3=,sinθ2=,SE≥SM,
∴θ3≥θ2.
故选:
D.
6.(浙江)函数y=2|x|sin2x的图象可能是( )
A.B.C.D.
【解答】解:
根据函数的解析式y=2|x|sin2x,得到:
函数的图象为奇函数,
故排除A和B.
当x=时,函数的值也为0,
故排除C.
故选:
D.
二.填空题(共9小题)
7.(江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为 2 .
【解答】解:
双曲线=1(a>0,b>0)的右焦点F(c,0)到一条渐近线y=x的距离为c,
可得:
=b=,
可得,即c=2a,
所以双曲线的离心率为:
e=.
故答案为:
2.
8.(江苏)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为 ﹣3 .
【解答】解:
∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,
∴f′(x)=2x(3x﹣a),x∈(0,+∞),
①当a≤0时,f′(x)=2x(3x﹣a)>0,
函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;
②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,
∴f(x)在(0,)上递减,在(,+∞)递增,
又f(x)只有一个零点,
∴f()=﹣+1=0,解得a=3,
f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],
f′(x)>0的解集为(﹣1,0),
f(x)在(﹣1,0)上递增,在(0,1)上递减,
f(﹣1)=﹣4,f(0)=1,f
(1)=0,
∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,
∴f(x)在[﹣1,1]上的最大值与最小值的和为:
f(x)max+f(x)min=﹣4+1=﹣3.
9.(天津)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是 (4,8) .
【解答】解:
当x≤0时,由f(x)=ax得x2+2ax+a=ax,
得x2+ax+a=0,
得a(x+1)=﹣x2,
得a=﹣,
设g(x)=﹣,则g′(x)=﹣=﹣,
由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,
由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,
当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,
得x2﹣ax+2a=0,
得a(x﹣2)=x2,当x=2时,方程不成立,
当x≠2时,a=
设h(x)=,则h′(x)==,
由h′(x)>0得x>4,此时递增,
由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,
要使f(x)=ax恰有2个互异的实数解,
则由图象知4<a<8,
故答案为:
(4,8)
10.(北京)已知椭圆M:
+=1(a>b>0),双曲线N:
﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为 ;双曲线N的离心率为 2 .
【解答】解:
椭圆M:
+=1(a>b>0),双曲线N:
﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,
可得椭圆的焦点坐标(c,0),正六边形的一个顶点(,),可得:
,可得,可得e4﹣8e2+4=0,e∈(0,1),
解得e=.
同时,双曲线的渐近线的斜率为,即,
可得:
,即,
可得双曲线的离心率为e==2.
故答案为:
;2.
11.(上海)已知实数x1、x2、y1、y2满足:
x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为 + .
【解答】解:
设A(x1,y1),B(x2,y2),
=(x1,y1),=(x2,y2),
由x12+y12=1,x22+y22=1,x1x2+y1y2=,
可得A,B两点在圆x2+y2=1上,
且=1×1×cos∠AOB=,
即有∠AOB=60°,
即三角形OAB为等边三角形,
AB=1,
+的几何意义为点A,B两点
到直线x+y﹣1=0的距离d1与d2之和,
显然A,B在第三象限,AB所在直线与直线x+y=1平行,
可设AB:
x+y+t=0,(t>0),
由圆心O到直线AB的距离d=,
可得2