高三数学试题精选高考数学概率试题汇编Word格式文档下载.docx
《高三数学试题精选高考数学概率试题汇编Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《高三数学试题精选高考数学概率试题汇编Word格式文档下载.docx(41页珍藏版)》请在冰豆网上搜索。
093×
01=09477
(2)记水电站年总利润为(单位万元).
①安装1台发电机的情形.
由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润=5000,E()=5000×
1=5000
②安装2台发电机的情形.
依题意,当40X80时,一台发电机运行,此时=5000-800=4200,因此P(=4200)=P(40X80)=p1=02;
当X≥80时,两台发电机运行,此时=5000×
2=10000,因此P(=10000)=P(X≥80)=p2+p3=08由此得的分布列如下
420010000
P0208
所以,E()=4200×
02+10000×
08=8840
③安装3台发电机的情形.
依题意,当40X80时,一台发电机运行,此时=5000-1600=3400,因此P(=3400)=P(40X80)=p1=02;
当80≤X≤120时,两台发电机运行,此时=5000×
2-800=9200,因此P(=9200)=P(80≤X≤120)=p2=07;
当X120时,三台发电机运行,此时=5000×
3=15000,因此P(=15000)=P(X120)=p3=01由此得的分布列如下
3400920015000
P020701
所以,E()=3400×
02+9200×
07+15000×
01=8620
综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.
17.,,,[2018四川卷]一款击鼓小游戏的规则如下每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;
每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列.
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
17.解
(1)X可能的取值为10,20,100,-200
根据题意,有
P(X=10)=c13×
121×
1-122=38,
P(X=20)=c23×
122×
1-121=38,
P(X=100)=c33×
123×
1-120=18,
P(X=-200)=c03×
120×
1-123=18
所以X的分布列为
X1020180-200
P38
38
18
(2)设“第i盘游戏没有出现音乐”为事Ai(i=1,2,3),则
P(A1)=P(A2)=P(A3)=P(X=-200)=18
所以“三盘游戏中至少有一盘出现音乐”的概率为1-P(A1A2A3)=1-183=1-1512=511512
因此,玩三盘游戏至少有一盘出现音乐的概率是511512
(3)由
(1)知,X的数学期望为EX=10×
38+20×
38+100×
18-200×
18=-54
这表明,获得分数X的均值为负.
因此,多次游戏之后分数减少的可能性更大.
2古典概型
11.、[2018广东卷]从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.
1116
18.、、[2018福建卷]为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求
(i)顾客所获的奖励额为60元的概率;
(ii)顾客所获的奖励额的分布列及数学期望.
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.
18.解
(1)设顾客所获的奖励额为X
(i)依题意,得P(X=60)=c11c13c24=12
即顾客所获的奖励额为60元的概率为12,
(ii)依题意,得X的所有可能取值为20,60
P(X=60)=12,
P(X=20)=c23c24=12,
即X的分布列为
X2060
P0505
所以顾客所获的奖励额的期望为E(X)=20×
05+60×
05=40(元).
(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;
如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1
对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2
以下是对两个方案的分析
对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为
X12060100
P16
23
16
X1的期望为E(X1)=20×
16+60×
23+100×
16=60,
X1的方差为D(X1)=(20-60)2×
16+(60-60)2×
23+(100-60)2×
16=16003
对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为
X2406080
X2的期望为E(X2)=40×
23+80×
X2的方差为D(X2)=(40-60)2×
23+(80-60)2×
16=4003
由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2
5.[2018新标全国卷Ⅰ]4位同学各自在周六、周日两天中任选一天参加益活动,则周六、周日都有同学参加益活动的概率为()
A18B38
c58D78
5.D
6.[2018陕西卷]从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()
A15B25c35D45
6.c
16.、、[2018天津卷]某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学自数学学院,其余7名同学自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是自互不相同学院的概率;
(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.
16.解
(1)设“选出的3名同学是自互不相同的学院”为事A,则
P(A)=c13c27+c03c37c310=4960,
所以选出的3名同学是自互不相同学院的概率为4960
(2)随机变量X的所有可能值为0,1,2,3
P(X=)=c4c3-6c310(=0,1,2,3),
所以随机变量X的分布列是
X0123
12
310
130
随机变量X的数学期望E(X)=0×
16+1×
12+2×
310+3×
130=65
9.、[2018浙江卷]已知甲盒中仅有1个球且为红球,乙盒中有个红球和n个蓝球(≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.
(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);
(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).
则()
A.p1p2,E(ξ1)E(ξ2)
B.p1p2,E(ξ1)E(ξ2)
c.p1p2,E(ξ1)E(ξ2)
D.p1p2,E(ξ1)E(ξ2)
9.A
18.,[2018重庆卷]一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.
(注若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数)
18.解
(1)由古典概型中的概率计算式知所求概率为P=c34+c33c39=584
(2)X的所有可能值为1,2,3,且
P(X=1)=c24c15+c34c39=1742,
P(X=2)=c13c14c12+c23c16+c33c39=4384,
P(X=3)=c22c17c39=112,
故X的分布列为
X123
P1742
4384
112
从而E(X)=1×
1742+2×
4384+3×
112=4728
3几何概型
14.、[2018福建卷]如图14,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.
图14
142e2
7.[2018湖北卷]由不等式组x≤0,≥0,-x-2≤0确定的平面区域记为Ω1,不等式组x+≤1,x+≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()
A18B14c34D78
7.D
14.[2018辽宁卷]正方形的四个顶点A(-1,-1),B(1,-1),c(1,1),D(-1,1)分别在抛物线=-x2和=x2上,如图13所示.若将—个质点随机投入正方形ABcD中,则质点落在图中阴影区域的概率是________.
图13
1423
4互斥事有一个发生的概率
17.、[2018湖南卷]某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35现安排甲组研发新产品A,乙组研发新产品B设甲、乙两组的研发相互独立.
(1)求至少有一种新产品研发成功的概率.
(2)若新产品A研发成功,预计企业可获利润120万元;
若新产品B研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.
17.解记E={甲组研发新产品成功},F={乙组研发新产品成功},由题设知
P(E)=