拖动系统课程设计报告Word文件下载.docx

上传人:b****1 文档编号:13181138 上传时间:2022-10-07 格式:DOCX 页数:20 大小:467.05KB
下载 相关 举报
拖动系统课程设计报告Word文件下载.docx_第1页
第1页 / 共20页
拖动系统课程设计报告Word文件下载.docx_第2页
第2页 / 共20页
拖动系统课程设计报告Word文件下载.docx_第3页
第3页 / 共20页
拖动系统课程设计报告Word文件下载.docx_第4页
第4页 / 共20页
拖动系统课程设计报告Word文件下载.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

拖动系统课程设计报告Word文件下载.docx

《拖动系统课程设计报告Word文件下载.docx》由会员分享,可在线阅读,更多相关《拖动系统课程设计报告Word文件下载.docx(20页珍藏版)》请在冰豆网上搜索。

拖动系统课程设计报告Word文件下载.docx

0.08;

转速反馈系数:

0.005。

一、该同学的主要任务

1、查找文献,了解直流电动机双闭环调速系统的的应用;

2、设计直流电动机双闭环调速系统,并设计出相应的电路原理图;

3、建立SIMULINK电气仿真模型;

4、设计PID算法,对转速、电流双闭环系统进行负载试验、抗干扰试验;

二、目标

1、建立直流电动机双闭环调速系统数学模型;

2、设计PID算法,调试参数,使电流超调量小于5%;

3、转速超调量小于10%。

4、要求最大启动电流不超过在10A。

主要内容与基本要求

本课题主要研究直流电动机的双闭环调速系统,该同学主要工作是双闭环调速系统设计与仿真试验分析。

基本内容:

1、设计直流电动机双闭环调速系统总体方案;

2、电流调节器设计;

3、转速调节器设计;

4、分别对空载、负载、扰动工况进行仿真模拟;

基本数据要求:

1、空载时,给定速度分别为2000r/min、1000r/min,记录此时的实际速度和实际电流波形;

2、给定速度为500r/min,空载启动后,在1S时加载,负载转矩为1N.m,记录此时的实际速度和实际电流波形。

主要参

考资料

一、主要参考文献

1、基于C语言编程MCS-51单片机原理与应用;

张培仁,清华大学出版社;

2、电气传动的脉宽调制控制技术,吴守,机械工业出版社;

3、电力电子技术,浣喜明,高等教育出版社;

4、电动机的单片机控制,王晓明,北京航空航天出版社;

5、电机与拖动基础,李发海,清华大学出版社

计划进度:

序号

内容

1

任务布置与介绍

2

系统总体方案设计

3

硬件系统建模

4

直流电机数学模型推导

5

PWM算法设计

6

电流调节器设计

7

速度调节器设计

8

仿真调试与试验

9

撰写课程设计报告

10

答辩

实习地点

指导教师

签名

年月日

摘要

以控制系统的传递函数为基础,使用Matlab的Simulink工具箱对直流调速系统仿真研究。

采用面向控制系统电气原理结构图的方法建立了系统模型,结合SimPowerSystems工具箱,对转速、电流双闭环调速系统进行了仿真。

根据设计指标设计转速环和电流环,以及合理的PID算法,通过调节参数,对空载、负载、扰动工况下的结果波形进行对比分析。

结果表明,双闭环系统具有较好的动态性能,对负载变化和电网电压的波动都能起抗扰作用,且能够在电动机过载时起到快速的自我保护作用。

关键词:

双闭环;

直流电机;

Simulink

目录

1.直流电机速度电流双闭环调速系统的基本原理5

2.直流电机速度电流双闭环调速系统的设计5

2.1系统总体方案设计5

2.2硬件电路设计..6

2.3电流调节器设计6

2.4转速调节器设计9

3.直流电机速度电流双闭环调速系统的仿真10

3.1开环系统仿真实验10

3.2电流单闭环系统仿真实验14

3.3速度电流双闭环系统仿真实验15

4.总结20

5.参考文献20

正文

1.直流电机速度电流双闭环调速系统的基本原理

直流调速是交流拖动系统的基础,该系统中设置了电流检测环节、电流调节器以及速度检测环节、速度调节器,构成了电流环和速度环,前者通过电流原件的反馈作用稳定电流,候着通过速度检测原件的反馈作用保持速度稳定,最终小车速度偏差,从而使系统达到调节电流和速度的目的。

该系统启动时,速度外环饱和不起作用,电流内环起主要作用,调节启动电流保持最大值,使速度线性变化,迅速达到给定值;

稳态运行时,速度负反馈外环起主要作用,使速度给定电压的变化而变化,电流内环跟随速度外环调节电机的电枢电流以平衡负载电流。

2.直流电机速度电流双闭环调速系统的设计

2.1系统总体方案设计

2.2硬件电路设计

图1

图2

图三

图1,图2,图3分别为驱动电压、输出电压和电流波形

它们之间的关系是:

Ug1=Ug4=-Ug2=-Ug3。

在一个开关周期内,当0≤t<

ton时,Uab=Us,电枢电流id沿回路1流通;

当ton≤t<

T时,驱动电压反相,id沿回路2经二极管续流,Uab=-Us。

因此,Uab在一个周期内具有正负相间的脉冲波形,这是双极式名称的由来。

图2、图3也绘出了双极式控制时的输出电压和电流波形。

相当于一般负载的情况,脉动电流的方向始终为正;

相当于轻载情况,电流可在正负方向之间脉动,但平均值仍为正,等于负载电流。

电动机的正反转则体现在驱动电压正、负脉冲的宽度上。

当正脉冲较宽时,ton>

T/2,则Uab的平均值为正,电动机正转,反之,则反转;

如果正、负脉冲相等,t=T/2,平均输出电压为零,则电动机停止。

图2、图3所示的波形是电动机正转时的情况。

双极式控制可逆PWM变换器的输出平均电压为:

若占空比ρ和电压系数γ的定义与不可逆变换器相同,则在双极式是可逆变换器中:

γ=2ρ-1就和不可逆变换器中的关系不一样了。

调速时,ρ的可调范围为0~1,相应的,γ=(-1)~(+1)。

当ρ>

1/2时,γ为正,电动机正转;

当ρ<

1/2时,γ为负,电动机反转;

当ρ=1/2时,γ=0,电动机停止。

但电动机停止时电枢电压并不等于零,而是正负脉宽相等的交变脉冲电压,因而,电流也是交变的。

这个交变电流的平均值为零,不产生平均转矩,徒然增大电动机的损耗,这是双极式控制的缺点。

但它也有好处,在电动机停止时仍有高频微振电流,从而消除了正、反向时的静摩擦死区,起着所谓“动力润滑”的作用。

双极式控制的桥式可逆PWM变换器有下列优点:

1)电流一定连续;

2)可使电动机在四象限运行;

3)电动机停止时有微振电流,能消除静摩擦死区;

4)低速平稳性好,系统的调速范围可达1:

20000左右;

5)低速时,每个开关器件的驱动脉冲仍较宽,有利于保证器件的可靠导通。

双极式控制方式的不足之处是:

在工作过程中,4个开关器件可能都处于开关状态,开关损耗大,而且在切换时可能发生上、下桥臂直通的事故,为了防止直通,在上、下桥臂的驱动脉冲之间,应设置逻辑延时。

为了克服上述缺点,可采用单极式控制,使部分器件处于常通或常断状态,以减少开关次数和开关损耗,提高可靠性,但系统的静、动态性能会略有降低[

2.3电流调节器设计

作为内环的调节器,在转速外环的调节过程中,它的作用是使电流紧紧跟随其给定的电压Un*(即外环调节器的输出量)变化,且对电网电压的波动起及时抗扰作用。

在转速稳态过程中,能够保证获得电动机允许的最大电流,从而加快动态过程;

当电动机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。

一旦故障消失,系统立即自动恢复正常。

把转速环给定滤波和反馈滤波同时等效地移到环内前向通道上,并将给定信号改成Un*β,再把时间常数为Ts和Ton两个小惯性环节合并起来,近似成一个时间常数为Ti的惯性环节,其中

Ti=Ts+Toi

采用PI型的电流调节器,其传递函数可以写成

WACRs=Ki(τis+1)τis

则开环传递函数为

Wopis=Ki(τns+1)τisβKsR(Tis+1)(Tls+1)

因为Tl>

>

Ti,所以选择τi=Tl,用调节器零点消去控制对象中大的时间常数极点,以便校正成典型一型系统,因此

令转速开环增益KI=KiβKsτiR=KiβKsTlR

Wopis=KIs(Tis+1)

给定电流超调量σi≤5%,选取KITi=0.5,则KI=ωci=12Ti,

再根据KI=KiβKsτiR=KiβKsTlR,得到

Ki=TlR2βKsTi

2.4速度调节器设计

转速调节器是调速系统的主导调节器,它是转速n很快地跟随给定电压Un*变化,稳态时可减小转速误差,如果采用PI调节器,则刻实现转速无静差。

转速调节器对负载变化起抗扰作用,其输出限幅值决定电动机允许的最大电流。

把转速环给定滤波和反馈滤波同时等效地移到环内前向通道上,并将给定信号改成Un*α,再把时间常数为1KI和Ton两个小惯性换届合并起来,近似成一个时间常数为Tn的惯性环节,其中

Tn=1KI+Ton

采用PI型的转速调节器,其传递函数可以写成

WASRs=Kn(τns+1)τns

Wns=Kn(τns+1)τnsαRβCeTm(TN+1)

令转速开环增益KN=KnαRτnβCeTm

Wns=KN(τns+1)s2(TNs+1)

按照典型二型系统的参数关系,有

τn=hTn

KN=h+12h2Tn2

Kn=(h+1)βCeTm2hαRTn

中频宽h要看动态的要求决定,一般选择h=5。

3直流电机速度电流双闭环调速系统的仿真

3.1开环系统仿真实验

(1.1)空载转速

(1.2)空载电流

(1.3)空载转矩

分析:

空载时,系统在2s左右达到稳态,转速无超调

(2.1)加载转速

(2.2)加载电流

(2.3)加载转矩

在1s时加负载后,系统达到稳态时,转速比空载时减小,电流和电磁转矩不再为零,而与输入负载转矩有关。

(3.1)减载转速

(3.2)减载电流

(3.3)减载转矩

1s后减载,转速突然上升,电流和电磁转矩突然减小,达到稳态的时间与加载情况相同,但稳态转速要比加载时高,电流和电磁转矩比加载时小。

3.2电流单闭环系统仿真实验

(1.1)阶跃输入:

0.56;

电流环Kp=5,Ki=50

(1.2)阶跃输入:

电流环Kp=5,Ki=5

3.3速度电流双闭环系统仿真实验

(1)负载转矩:

3N·

m,给定转速:

1500rad/min,

转速环KP=20,Ki=120;

电流环KP=5,Ki=50;

(2)负载转矩:

1000rad/min,

(3)负载转矩:

转速环KP=150,Ki=120;

(4)负载转矩:

转速环KP=20,Ki=10;

第一阶段(0~约0.01s)是电流上升阶段:

突然给定电压Un*后,经过两个调节器的跟随作用,Uc、Ud0、Id都上升,但是在Id没有达到负载电流IdL以前,电动机还不能转动。

当Id≥IdL后,电动机开始启动,由于机电惯性的作用,转速不会很快增长,因而转速调节器的输入偏差电压(∆Un=Un*-Un)的数值仍较大,其输出电压保持限幅值

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1