数字信号处理课程设计报告——数字听诊器Word格式文档下载.doc

上传人:b****1 文档编号:13114750 上传时间:2022-10-05 格式:DOC 页数:21 大小:1.06MB
下载 相关 举报
数字信号处理课程设计报告——数字听诊器Word格式文档下载.doc_第1页
第1页 / 共21页
数字信号处理课程设计报告——数字听诊器Word格式文档下载.doc_第2页
第2页 / 共21页
数字信号处理课程设计报告——数字听诊器Word格式文档下载.doc_第3页
第3页 / 共21页
数字信号处理课程设计报告——数字听诊器Word格式文档下载.doc_第4页
第4页 / 共21页
数字信号处理课程设计报告——数字听诊器Word格式文档下载.doc_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

数字信号处理课程设计报告——数字听诊器Word格式文档下载.doc

《数字信号处理课程设计报告——数字听诊器Word格式文档下载.doc》由会员分享,可在线阅读,更多相关《数字信号处理课程设计报告——数字听诊器Word格式文档下载.doc(21页珍藏版)》请在冰豆网上搜索。

数字信号处理课程设计报告——数字听诊器Word格式文档下载.doc

3.3BUTTON3运行 12

3.4文本编辑框 15

3.5GUI整体界面 15

四.课程设计总结 16

五.设计体会 17

六.参考文献 18

-19-

一.课程设计任务

1、掌握MATLAB及其在数字信号处理中的应用

MATLAB计算软件是一套进行科学计算的高性能软件,可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

Matlab语言可以很容易实现Fourier变换和数字滤器的设计,广泛应用于数字信号处理中,给我们对数字信号的研究工作带来很大方便,同时具有功能全面的GUI程序设计,使所设计的应用程序具有图形用户界面,方便用户操作。

数字听诊器信号分析

目前大夫主要以听诊器倾听病人的气管、肺部区域的声音,对病人的疾病进行判断;

请设计一个听诊的软件,要求如下:

1)可记录病人的姓名、年龄、性别、病史、不同疾病部位等状况;

2)对病人的气管、肺部等区域的声音进行采集、分析、存储(前端听诊部分不用考虑,只考虑数据采集部分)。

3)可分析不同声音分量的大小,给出频谱图,以及主要频率的幅度,便于大夫分析和验证;

4)由于采集到的信号经常存在某些干扰信号,比如心脏的震动,请设计低通、带通、带阻滤波器对信号处理,滤波器参数在用户界面中可以进行设置,方便医生进行使用;

5)编制GUI用户界面。

二.课程设计原理及设计方案

1、滤波器设计原理

1.1滤波器概述

随着信息时代和数字世界的到来,数字信号处理已成为当今一门极其重要的学科和技术领域。

数字信号处理在通信、语音、图像,自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。

在数字信号处理中,数字滤波器占有极其重要的地位。

现代数字滤波器可以用软件或设计专用的数字处理硬件两种方式来实现,用软件来实现数字滤波器优点是随着滤波器参数的改变,很容易改变滤波器的性能。

根据数字滤波器单脉冲响应的时域特性可将数字滤波器分为两种,即IIR(InfiniteImpulseResponse)无限长脉冲响应数字滤波器和FIR(FiniteImpulseResponse)有限长脉冲响应数字滤波器。

从功能上分类,可分为低通、高通、带通、带阻滤波器。

1.2FIR数字滤波器设计原理

FIR具有突出的优点:

系统总是稳定的、易于实现线性相位、允许设计多通带(或多阻带)滤波器。

但与IIR相比,在满足同样的阻带衰减的情况下需要较高的阶数。

FIR的冲激响应h(k)是有限长的M阶FIR系统函数可表示为

滤波器的输出:

它的设计问题实质上是确定能满足所要求的转移序列或脉冲响应的常数问题,给出的设计方法主要有窗函数法、频率采样法和等波纹最佳逼近法等。

在这里我们利用窗函数法设计FIR滤波器。

给定所要求的滤波器的频率响应Hd(ejw),要求设计一个FIR滤波器的频率响应H(ejw)来逼近Hd(ejw).设计是在时域进行的,首先由傅立叶变换导出无限长的序列hd(n),然后用窗函数截断hd(n),即:

h(n)=hd(n)w(n)。

1.3FIR数字滤波器的特性

FIR滤波器有以下特点:

(1)系统的单位冲激响应h(n)在有限个n值处不为零;

(2)系统函数H(z)在|z|>

0处收敛,极点全部在z=0处(因果系统);

(3)结构上主要是非递归结构,没有输出到输入的反馈,但有些结构中(例如频率抽样结构)也包含有反馈的递归部分。

因为FIR数字滤波器的单位冲激响应是有限长的,所以它永远都是稳定的。

[3]说明了达到具有线性相位这一要求,仅需要对FIR数字滤波器的冲激响应施加一定的约束。

令,就可由得到FIR数字滤波器的频率响应:

(1-2-1)

式中是的幅频特性,是的相频特性

(1-2-2)

由于h(n)的长度N取奇数或偶数时对H(w)的特性有影响,FIR滤波器的幅频特性可以分为以下4种情况:

(1)第Ⅰ种类型:

为偶对称,且N为奇数

根据式:

可以得到滤波器的幅频函数为:

(1-2-3)

其中,。

幅度函数对呈偶对称。

(2)第Ⅱ种类型:

为偶对称,且N为偶数

可得滤波器的幅频函数为:

(1-2-4)

其中:

幅度函数对于或呈偶对称。

如果数字滤波器在处不为零,如本文设计的高通滤波器和带阻滤波器则不能用这一类型。

(3)第Ⅲ种类型:

为奇对称,且N为奇数

(1-2-5)

其中。

数字滤波器在=0,,2处不为零如低通滤波器、高通滤波器、带阻滤波器,则不适合用这类滤波器来设计。

(4)第Ⅳ种类型:

为奇对称,且N为偶数

可得滤波器的幅频函数可表示为:

(1-2-6)

幅度函数对于呈偶对称。

如果数字滤波器在处不为零如低通滤波器、带阻滤波器,则不适合用这类数字滤波器来设计。

1.4窗函数的介绍

设计滤波器尽量要求窗函数满足以下两项要求:

(1)窗谱主瓣尽可能地窄,以获取较陡的过渡带。

(2)尽量减少窗谱的最大旁瓣的相对幅度。

也就是能量尽量集中于主瓣,这样使尖峰和波纹减小,就可增大阻带的衰减。

但是这两项要求是不能同时满足的。

当选用主瓣宽度较窄时,虽然得到陡峭的过渡带,但通带和阻带的波动明显增加;

当选用最小的旁瓣幅度时,虽能得到平坦的幅度响应和较小的阻带波纹,但过渡带加宽,即主瓣会加宽。

因此,实际所选用的窗函数往往是它们的折中。

设计FIR滤波器常用的窗函数有:

矩形窗、三角窗、汉宁窗、海明窗、布拉克曼窗、凯塞窗等。

以下是几种窗函数的性能比较:

窗函数

旁瓣峰值衰减(dB)

等效凯塞尔窗()

主瓣过渡带宽()

精确过渡带宽()

最小阻带衰减(Db)

矩形窗

-13

4

1.8

-21

三角窗

-25

1.33

8

6.1

汉宁窗

-31

3.86

6.2

-44

海明窗

-41

4.86

6.6

-53

布莱克曼窗

-57

7.04

12

11

-74

凯赛尔窗

7.865

10

-80

2、设计方案

☆通过采集WAV文件读取不同病人心肺声音信号。

☆对声音信号进行时域、频谱及幅度谱分析,观察不同声音分量大小以及主要频率的幅度。

☆设计FIR数字滤波器对声音信号进行滤波,设计不同的窗函数进行带通、带通、带阻滤波。

☆设计GUI界面,可进行滤波器参数设置。

三.课程设计的步骤和结果

1、读取病人心肺声音信号并对其进行频谱分析

[x,B]=wavread(‘fb2.wav’);

%读取病人心肺声音信号

F=B*(0:

511)/1024;

y=fft(x,1024);

%频谱

fp=2*sqrt(y.*conj(y));

%幅度谱

subplot(3,1,1);

plot(x);

title('

滤波前信号'

);

subplot(3,1,2);

plot(F,abs(y(1:

512)));

title('

滤波前信号频谱'

axis([0,1000,0,inf]);

subplot(3,1,3);

plot(fp(1:

257));

信号幅度谱'

2、设计滤波器对信号进行滤波(以凯塞窗为例)

2.1低通滤波器

[x,B]=wavread('

fb2.wav'

Fs=2000;

%采样频率

Fp1=10;

%低通通带模拟截止频率

Fs1=100;

%低通阻带模拟截止频率

ws1=2*Fs1/Fs;

%模拟转变为数字域的截止频率

wp1=2*Fp1/Fs;

delta_w=ws1-wp1;

%过渡带宽

N=ceil(10*pi/delta_w)+1;

%最小阶数N

window=kaiser(N+1)'

;

%凯塞窗

Wn=(Fp1+Fs1)/Fs;

%理想LPF的截止频率

[b,a]=fir1(N,Wn,window);

[H,w]=freqz(b,1,512);

db=20*log10(abs(H));

t=(0:

200)/Fs;

plot(w*Fs/(2*pi),db);

滤波器'

Filterx=filter(b,a,x);

plot(Filterx);

滤波后信号'

y=fft(Filterx,1024);

滤波后信号频谱'

如上设计采样频率为2000Hz,通带截止频率为10Hz,阻带截止频率为200Hz的低通滤波器对原声音信号进行滤波

对比滤波前后信号频谱,可观察得到该滤波器成功滤除了大于100Hz的频率,但仍与理想情况有一定差距。

2.2带通滤波器

Fp1=200;

%带通通带模拟截止频率

Fp2=400;

%带通阻带模拟截止频率

Fs2=500;

ws2=2*Fs2/Fs;

wp2=2*Fp2/Fs;

delta_w1=wp1-ws1;

delta_w2=ws2-wp2;

delta_w=min(deltaw1,deltaw2);

N=ceil(10*pi/delta_w1)+1;

window=kaiser(N+1);

%凯塞窗

b=fir1(N,[wp1/piwp2/pi],window);

db=20*log(abs(H));

Filterx=filter(b,1,x);

plot(Filt

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 辩护词

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1