氧化锆陶瓷Word文档格式.doc

上传人:wj 文档编号:13050313 上传时间:2022-10-03 格式:DOC 页数:31 大小:159.50KB
下载 相关 举报
氧化锆陶瓷Word文档格式.doc_第1页
第1页 / 共31页
氧化锆陶瓷Word文档格式.doc_第2页
第2页 / 共31页
氧化锆陶瓷Word文档格式.doc_第3页
第3页 / 共31页
氧化锆陶瓷Word文档格式.doc_第4页
第4页 / 共31页
氧化锆陶瓷Word文档格式.doc_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

氧化锆陶瓷Word文档格式.doc

《氧化锆陶瓷Word文档格式.doc》由会员分享,可在线阅读,更多相关《氧化锆陶瓷Word文档格式.doc(31页珍藏版)》请在冰豆网上搜索。

氧化锆陶瓷Word文档格式.doc

氮化物陶瓷

  氮化物陶瓷:

氮化硅、氮化铝、氮化硼、氮化铀等。

碳化物陶瓷

  碳化物陶瓷:

碳化硅、碳化硼、碳化铀等。

硼化物陶瓷

  硼化物陶瓷:

硼化锆、硼化镧等。

硅化物陶瓷

  硅化物陶瓷:

二硅化钼等。

氟化物陶瓷

  氟化物陶瓷:

氟化镁、氟化钙、三氟化镧等。

硫化物陶瓷

  硫化物陶瓷:

硫化锌、硫化铈等。

其他

还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。

  

除了主要由一种化合物构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。

例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。

此外,有一大类在陶瓷中添加了金属而生成的金属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷,硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。

近年来,为了改善陶瓷的脆性,在陶瓷基体中添加了金属纤维和无机纤维,这样构成的纤维补强陶瓷复合材料,是陶瓷家族中最年轻但却是最有发展前途的一个分支。

为了生产、研究和学习上的方便,有时不按化学组成,而根据陶瓷的性能,把它们分为高强度陶瓷,高温陶瓷,高韧性陶瓷,铁电陶瓷,压电陶瓷,电解质陶瓷,半导体陶瓷,电介质陶瓷,光学陶瓷(即透明陶瓷),磁性瓷,耐酸陶瓷和生物陶瓷等等。

  随着科学技术的发展,人们可以预期现代陶瓷将会更快地发展,产生更多更新的品种。

二、制作工艺

成形方法与结合剂的选择

特种陶瓷成形方法有很多种,生产中应根据制品的形状选择成形方法,而不同的成形方法需选用的结合剂不同。

常见陶瓷成形方法、结合剂种类及用量如下所示:

特种陶瓷成形方法、结合剂种类和用量  

成形方法结合剂举例<

结合剂用量(质量%)  

千压法聚乙烯醇缩丁醛等1~5  

浇注法丙烯基树脂类1~3  

挤压法甲基纤维素等5~15  

注射法聚丙烯等10~25  

等静压法聚羧酸铵等0~3  

结合剂可分为润滑剂、增塑剂、分散剂、表面活性剂(具有分散剂和润滑功能)等,为满足成形需要,通常采用多种有机材料的组合。

选择结合剂,要考虑以下因素:

1)结合剂能被粉料润湿是必要条件。

当粉料的临界表面张力(yoc)或表面自由能(yos)比结合剂的表面张力(yoc)大时,才能很好地润湿。

2)好的结合剂易于被粉料充分润湿,且内聚力大。

当结合剂被粉料润湿时,在相互分子间发生引力作用,结合剂与粉料间发生红结合(一次结合),同时,在结合剂分子内,由于取向、诱导、分散效果而产生内聚力(二次结合)。

虽然水也能把杨料充分润湿,但水易挥发,分子量较小,内聚力小,不是好的结合剂。

按各种有机材料内聚力大小顺序,用基表示可排列如下:

一CONH一>-CONH2>一COOH>一OH>-NO2>-COOC2H5>一COOCH5>-CHO>=CO>-CH3>=CH2>-CH2  

3)结合剂的分子量大小要适中。

要想充分润湿,希望分子量小,但内聚力弱。

随着分子量增大,结合能力增强。

但当分子量过大时,围内聚力过大而不易被润湿,且易使坯体产生变形。

为了帮助分子内的链段运动,此时要适当加入增塑剂,在其容易润湿的同时,使结合剂更加柔软,便于成形。

4)为保证产品质量,还需要防止从结合剂、原材料和配制工序混人杂质,使产品产生有害的缺陷。

在原料配制中,用粉碎、混合等机械方法和结合剂、分散剂配合,达到分散,尽可能不含有凝聚粒子。

结合剂受到种类及其分子量,粒子表面的性质和溶剂的溶解性等影响,吸附在原料粒子表面上,通过立体稳定化效果,起到防止粉末原料凝聚的作用。

在成形工序中,结合剂给原料以可塑性,具有保水功能,提高成形体强度和施工作业性。

一般来说,结合剂由于妨碍陶瓷的烧结,应在脱脂工序通过加热使其分解挥发掉。

因此,要选用能够易于飞散除去以及不含有害无机盐和金属离子的有机材料,才能确保产品质量。

陶瓷注射成形和成形用结合剂

氮化硅等特种陶瓷材料具有高强度、高耐磨性、低密度(轻量化)、耐热性、耐腐蚀性等优良性能,适用于制造涡轮加料机叶轮、摇臂式烧嘴、辅助燃烧室等汽车用陶瓷部件。

这些部件要求复杂的形状、高精度尺寸和高可靠性。

不允许有内在缺陷(裂纹、气孔、异物等)和表面缺陷。

能满足这些质量要求的成形技术之一,就是陶瓷注射成形法。

陶瓷注射成型技术来源于高分子材料的注塑成型,借助高分子聚合物在高温下熔融、低温下凝固的特性来进行成型的,成型之后再把高聚物脱除。

比传统的陶瓷加工工艺要简单的多,能制造出各种复杂形状的高精度陶瓷零部件,且易于规模化和自动化生产。

目前,由清华大学材料科学与工程系杨金龙教授发明的CiM(陶瓷胶态注射成型方法及装置)技术在国内该领域中处于领先水平。

陶瓷的注射成型技术有着诸多优点,用它制备复杂形状的陶瓷元件,不仅产品尺寸精度高、表面条件好,而且省去了后加工操作,降低了生产成本,缩短了生产周期,还具有自动化程度高、适合于大规模生产的特点。

该工艺一般包括下列步骤:

陶瓷粉的选取、粘结剂的选取、陶瓷粉与粘结剂的均匀混合、注射成型、脱脂、烧结。

其中脱脂是关键。

起初的陶瓷成型注射技术是将大量的高分子树脂与陶瓷粉体混练在一起后得到混合料,然后装入注射机于一定温度注入模具,迅速冷凝后脱模而制成坯体。

该技术适合制备湿坯强度大,尺寸精度高,机械加工量少,坯体均一的产品,适于大规模生产。

对形状复杂、厚度较薄产品的制备有着明显的优越性。

但是由于含有大量的高分子粘结剂,使陶瓷坯体的脱脂成为不可逾越难题,并且有毛坯易变形,容易形成气孔等缺点。

粘结剂能使粉末填充成预期形状,它对整个工艺有重要的影响。

理想的粘结剂应该具有以下特点:

1)在成型温度下纯粘结剂的粘度在1Pa•s以下,流动时不发生与粉体的分离,冷却后有足够的强度和硬度;

2)为惰性物质,与粉体不发生反应;

3)在成型和混合温度以上才分解,分解的产物无毒、无腐蚀性且残余灰分少;

4)膨胀系数低,由热膨胀或结晶引起的残余应力低;

5)符合环保要求,价廉、安全、不吸湿、无易挥发组分,贮藏寿命长。

目前使用的大多数粘结剂可分为3类:

蜡基或油基粘结剂、水基粘结剂和固体聚合物溶液。

蜡基粘结剂通常含3-4个组分,聚合物控制着流动粘度、生品(烧结前的坯体)强度和脱脂的特征。

短分子链的成型性能好且可使成型元件中的定向作用减至最小。

蜡或油是主填充剂,在脱脂的初期被除去。

表面活性剂用于改善粉末与粘结剂的相容性。

增塑剂用来调节聚合物的流动特性。

水基粘结剂含有水溶性聚合物、凝胶或水玻璃。

这类粘结剂通常采用低压成型以避免粉末与粘结剂的分离和减少模具磨损及残余应力。

由于水易于除去,这使得制造较厚的元件成为可能。

粘结剂溶液的凝固或胶凝使生品具有了强度。

在烧结前,水从生品中蒸发或升华出去,使变形降至最低程度。

新型的、采用聚苯乙烯的固体聚合物溶液的粘结剂配方已经被采用以避免变形。

主填充剂用溶液浸渍法除去。

由于聚苯乙烯的骨架结构没法被削弱,所以避免了生品的变形。

主填充剂是一种小的有机物分子,它既有苯环又有极性集团。

苯环使它在混合时可溶于聚苯乙烯,极性集团则使它在脱脂时可溶于水或醇等溶剂中。

常见的粘结剂有聚丙烯(PP)、无规则聚丙烯(APP)、聚乙烯(PE)、乙烯一醋酸乙烯共聚体(EVA)、聚苯乙烯(PS)、丙烯酸系树脂等。

其中PE具有优异的成形性;

EVA与其他树脂的相溶性好,流动性、成形性也好;

APP具有与其他树脂相溶性好、富于流动性和脱脂性的特征;

PS流动性好。

助剂有蜡石石蜡、微晶石蜡、变性石蜡、天然石蜡、硬脂酸、配合剂等。

成形材料的流动性可以使用高式流动点测定器和熔化分度器进行评价。

当脱脂具有结合剂的含量多时,则脱脂性有降低的倾向,助剂的石蜡多者,脱脂性好。

如果有机材料在特定的温度区域不能全部飞散掉,就会影响陶瓷的烧结,因此,需要考虑热分解特性,加以选择。

陶瓷挤压成形和成形用结合剂

堇青石由于具有耐热性、耐腐蚀性、多孔质性、低热膨胀性等优良材料特性,所以广泛用作汽车尾气净化催化剂用载体。

堇青石蜂窝状物利用原料粒子的取向,产生出蜂窝状结构体的低热膨胀,可用挤压成形法来制造。

根据堇青石分子组成(2MgO·

2Al2O3·

5SiO2),原料可选用滑石、高岭土和氧化铝。

成形用坯土从口盖里面的供给孔进入口盖内,经过细分后,向薄壁扩展,再结合,由此求得延伸性和结合性好的质量。

另外,作为挤压成形后的蜂窝状体,为了保持形状,坯土的屈服值高者好,也就是说,选择结合剂应使坯土的流动性和自守性两个性能达到最佳化。

原料粉末、结合剂、助剂(润滑剂、界面活性剂等)及水经机械混练后,用螺杆挤压机连续式挤压或用油压柱塞式挤压机挤压成形。

一般来说,挤压成形使用的结合剂只要用低浓度水溶液,便可显示出高粘性的结合性能。

常用的有甲基纤维素(MC)、羧甲基纤维素(CMC)、聚氧乙烯(PEO)、聚乙烯醇(PVA)、羟乙基纤维素(HEC)等。

MC能很好溶于水中,当加热时很快胶化。

CMC能很好溶于水中,分散性、稳定性也高。

PVA广泛地用于各种成形。

润滑剂可减少粉体间的摩擦,界面活性剂可提高原料粉末与水的润湿性。

缺乏可塑性,具有膨胀特性的坯土使挤压不够光滑,表面缺陷增加。

因此,对结合剂的性能应有评价指标。

评价还土的可塑性方法,有施加扭曲、压缩、拉伸等应力,求出应力与变形之间的关系,用毛细管流变计的方法、粘弹性的方法等。

用这种方法可以评价坯土的自守性和流动性。

在用粘弹性的方法评价时,可得出结合剂配合量增加到一定程度时,自守性和流动性均会增加的结果。

也就是说,结合剂配合量的增加有助于原料的可塑性增加。

有机材料是特种陶瓷的主要结合剂,合理选用这些有机材料是保证产品质量的关键。

在生产中,应根据粉料的特性、制品的形状、成形方法综合进行选择。

第二节氧化锆

一、简介

氧化锆(ZrO2)自然界的氧化锆矿物原料,主要有斜锆石和锆英石。

锆英石系火成岩深层矿物,颜色有淡黄、棕黄、黄绿等,比重4.6—4.7,硬度7.5,具有强烈的金属光泽,可为陶瓷釉用原料。

纯的氧化锆是一种高级耐火原料,其熔融温度约为2900℃它可提高釉的高温粘度和扩大粘度变化的温度范围,有较好的热稳定性,其含量为2%-3%时,能提高釉的抗龟裂性能。

还因它的化学惰性大,故能提高釉的化学稳定性和耐酸碱能力,还能起到乳浊剂的作用。

在建筑陶瓷釉料中多使用锆英石,一般用量为8%—12%。

并为“釉下白”的主要原料,氧化锆为黄绿色颜料良好的助色剂,若想获得较好的钒锆黄颜料必须选用质纯的氧化锆。

纯净的氧化锆是白色固体,含有杂质时会显现灰色或淡黄色,添加显色剂还可显示各种其它颜色。

纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715℃。

通常含有少量的氧化铪,难以分离,但是对氧化锆的性能没有明显的影响。

氧化锆有三种晶体形态:

单斜、四方、立方晶相。

常温下氧化锆

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 育儿理论经验

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1