7A文大学物理答案第11章Word格式文档下载.docx
《7A文大学物理答案第11章Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《7A文大学物理答案第11章Word格式文档下载.docx(21页珍藏版)》请在冰豆网上搜索。
.因而正确答案为(D).
11-3 下列说法正确的是( )
(A)闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过
(B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零
(C)磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零
(D)磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零
分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;
闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B).
11-4 在图(a)和(b)中各有一半径相同的圆形回路L1、L2,圆周内有电流I1、I2,其分布相同,且均在真空中,但在(b)图中L2回路外有电流I3,P1、P2为两圆形回路上的对应点,则( )
,
(B)
题11-4图
分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;
但同样会改变回路上各点的磁场分布.因而正确答案为(C).
11-5 半径为R的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I,磁介质的相对磁导率为μr(μr<1),则磁介质内的磁化强度为( )
(B)
分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M=(μr-1)H求得磁介质内的磁化强度,因而正确答案为(B).
11-6 北京正负电子对撞机的储存环是周长为240m的近似圆形轨道,当环中电子流强度为8mA时,在整个环中有多少电子在运行?
已知电子的速率接近光速.
分析 一个电子绕存储环近似以光速运动时,对电流的贡献为
,因而由
,可解出环中的电子数.
解 通过分析结果可得环中的电子数
11-7 已知铜的摩尔质量M=63.75g·
mol-1,密度ρ=8.9g·
cm-3,在铜导线里,假设每一个铜原子贡献出一个自由电子,
(1)为了技术上的安全,铜线内最大电流密度
,求此时铜线内电子的漂移速率vd;
(2)在室温下电子热运动的平均速率是电子漂移速率vd的多少倍?
分析 一个铜原子的质量
其中NA为阿伏伽德罗常数,由铜的密度ρ可以推算出铜的原子数密度
根据假设,每个铜原子贡献出一个自由电子,其电荷为e,电流密度
.从而可解得电子的漂移速率vd.
将电子气视为理想气体,根据气体动理论,电子热运动的平均速率
其中k为玻耳兹曼常量,me为电子质量.从而可解得电子的平均速率与漂移速率的关系.
解
(1)铜导线单位体积的原子数为
电流密度为jm时铜线内电子的漂移速率
(2)室温下(T=300K)电子热运动的平均速率与电子漂移速率之比为
室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.
11-8 有两个同轴导体圆柱面,它们的长度均为20m,内圆柱面的半径为3.0mm,外圆柱面的半径为9.0mm.若两圆柱面之间有10μA电流沿径向流过,求通过半径为6.0mm的圆柱面上的电流密度.
题11-8图
分析 如图所示是同轴柱面的横截面,电流密度j对中心轴对称分布.根据
恒定电流的连续性,在两个同轴导体之间的任意一个半径为r的同轴圆柱面上流过的电流I都相等,因此可得
解 由分析可知,在半径r=6.0mm的圆柱面上的电流密度
11-9 如图所示,已知地球北极地磁场磁感强度B的大小为6.0×
10-5T.如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?
流向如何?
解 设赤道电流为I,则由教材第11-4节例2知,圆电流轴线上北极点的磁感强度
因此赤道上的等效圆电流为
由于在地球地磁场的N极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.
题11-9图
11-10 如图所示,有两根导线沿半径方向接触铁环的a、b两点,并与很远处的电源相接.求环心O的磁感强度.
题11-10图
分析 根据叠加原理,点O的磁感强度可视作由ef、be、fa三段直线以及acb、adb两段圆弧电流共同激发.由于电源距环较远,
.而be、fa两段直线的延长线通过点O,由于
,由毕奥-萨伐尔定律知
.流过圆弧的电流I1、I2的方向如图所示,两圆弧在点O激发的磁场分别为
其中l1、l2分别是圆弧acb、adb的弧长,由于导线电阻R与弧长l成正比,而圆弧acb、adb又构成并联电路,故有
将
叠加可得点O的磁感强度B.
解 由上述分析可知,点O的合磁感强度
11-11 如图所示,几种载流导线在平面内分布,电流均为I,它们在点O的磁感强度各为多少?
题11-11图
分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O处所激发的磁感强度较容易求得,则总的磁感强度
.
解 (a)长直电流对点O而言,有
,因此它在点O产生的磁场为零,则点O处总的磁感强度为1/4圆弧电流所激发,故有
B0的方向垂直纸面向外.
(b)将载流导线看作圆电流和长直电流,由叠加原理可得
B0的方向垂直纸面向里.
(c)将载流导线看作1/2圆电流和两段半无限长直电流,由叠加原理可得
11-12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求
点O的磁感强度B.
题11-12图
分析 由教材11-4节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度
,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;
半无限长载流导线在圆心点O激发的磁感强度
,磁感强度的方向依照右手定则确定.
点O的磁感强度
可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O的叠加.
解 根据磁场的叠加
在图(a)中,
在图(b)中,
在图(c)中,
11-13 如图(a)所示,载流长直导线的电流为I,试求通过矩形面积的磁通量.
题11-13图
分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS.为此,可在矩形平面上取一矩形面元dS=ldG,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为
矩形平面的总磁通量
解 由上述分析可得矩形平面的总磁通量
11-14 已知10mm2裸铜线允许通过50A电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.
题11-14图
分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.
解 围绕轴线取同心圆为环路L,取其绕向与电流成右手螺旋关系,根据安培环路定理,有
在导线内r<R,
,因而
在导线外r>R,
磁感强度分布曲线如图所示.
11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:
(1)r<R1;
(2)R1<r<R2;
(3)R2<r<R3;
(4)r>R3.画出B-r图线.
题11-15图
分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r的同心圆为积分路径,
,利用安培环路定理
,可解得各区域的磁感强度.
解 由上述分析得
r<R1
R1<r<R2
R2<r<R3
r>R3
磁感强度B(r)的分布曲线如图(b).
11-16 如图所示,N匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I后,环内外磁场的分布.
题11-16图
分析 根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r的圆周为积分环路,由于磁感强度在每一环路上为常量,因而
依照安培环路定理
,可以解得螺线管内磁感强度的分布.
解 依照上述分析,有
R2>r>R1
r>R2
在螺线管内磁感强度B沿圆周,与电流成右手螺旋.若
和R2,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径
,则环内的磁感强度近似为
11-17 电流I均匀地流过半径为R的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.
题11-17图
分析 由题11-14可得导线内部距轴线为r处的磁感强度
在剖面上磁感强度分布不均匀,因此,需从磁通量的定义
来求解.沿轴线方向在剖面上取面元dS=ldr,考虑到面元上各点B相同,故穿过面元的磁通量dΦ=BdS,通过积分,可得单位长度导线内的磁通量
解 由分析可得单位长度导线内的磁通量
11-18 已知地面上空某处地磁场的磁感强度
,方向向北.若宇宙射线中有一速率
的质子,垂直地通过该处.求:
(1)洛伦兹力的方向;
(2)洛伦兹力的大小,并与该质子受到的万有引力相比较.
题11-18图
解
(1)依照
可知洛伦兹力
的方向为
的方向,如图所示.
(2)因
,质子所受的洛伦兹力
在地球表面质子所受的万有引力
因而,有
,即质子所受的洛伦兹力远大于重力.
11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两
侧分别安装电极并加以磁场.设血管直径为d=2.0mm,磁场为B=0.080T,毫伏表测出血管上下两端的电压为UH=0.10mV,血流的流速为多大?
题11-19图
分析 血流稳定时,有
由上式可以解得血流的速度.
解 依照分析
11-20 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5cm的圆弧径迹,测得磁感强度为0.20T,求此质子的动量和动能.
解 根据带电粒子回转半径与粒子运动速率的关系有
11-21 从太阳射来的速度为0.80×
108m/s的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0×
10-7T,此电子回转轨道半径为多大?
若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0×
10-5T,其轨道半径又为多少?
解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径
地磁北极附近的回转半径
11-22 如图(a)所示,一根长直导线载有电流I1=30A,矩形回路载有电流I2=20A.试计算作用在回路上的合力.已知d=1.0cm,
b=8.0cm,l=0.12m.
题11-22图
分析 矩形上、