现代城市污水处理主导工艺分析与评述Word格式文档下载.docx

上传人:b****1 文档编号:12967041 上传时间:2022-10-01 格式:DOCX 页数:7 大小:18.51KB
下载 相关 举报
现代城市污水处理主导工艺分析与评述Word格式文档下载.docx_第1页
第1页 / 共7页
现代城市污水处理主导工艺分析与评述Word格式文档下载.docx_第2页
第2页 / 共7页
现代城市污水处理主导工艺分析与评述Word格式文档下载.docx_第3页
第3页 / 共7页
现代城市污水处理主导工艺分析与评述Word格式文档下载.docx_第4页
第4页 / 共7页
现代城市污水处理主导工艺分析与评述Word格式文档下载.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

现代城市污水处理主导工艺分析与评述Word格式文档下载.docx

《现代城市污水处理主导工艺分析与评述Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《现代城市污水处理主导工艺分析与评述Word格式文档下载.docx(7页珍藏版)》请在冰豆网上搜索。

现代城市污水处理主导工艺分析与评述Word格式文档下载.docx

合理确定处理标准,选择简捷紧凑的处理工艺,尽可能地减少占地,力求降低地基处理和土建造价。

同时,必须充分考虑节省电耗和药耗,把运行费用减至最低。

对于我国现有的经济承受能力来说,这一点尤为重要。

  3)易于管理。

  城市污水处理是我国的新兴行业,专业人才相对缺乏。

在工艺选择过程中,必须充分考虑到我国现有的运行管理水平,尽可能做到设备简单,维护方便,适当采用可靠实用的自动化技术。

应特别注重工艺本身对水质变化的适应性及处理出水的稳定性。

  事实上,任何一种工艺总有是有利有敝,关键在于适用性如何。

在工程实践中,应该具体情况具体分析,因地制宜,综合比较,取长补短,作出较为优化的选择。

  2、城市污水处理厂主导工艺述评

  1)AB法工艺

  AB法工艺由德国BOHUKE教授首先开发。

该工艺将曝气池分为高低负荷两段,各有独立的沉淀和污泥回流系统。

高负荷段(A段)停留时间约20--40分钟,以生物絮凝吸附作用为主,同时发生不完全氧化反应,生物主要为短世代的细菌群落,去除BOD达50%以上。

B段与常规活性污泥法相似,负荷较低,泥龄较长。

  AB法A段效率很高,并有较强的缓冲能力。

B段起到出水把关作用,处理稳定性较好。

对于高浓度的污水处理,AB法具有很好适用性的,并有较高的节能效益。

尤其在采用污泥消化和沼气利用工艺时,优势最为明显。

  但是,AB法污泥产量较达,A段污泥有机物含量极高,污泥后续稳定化处理是必须的,将增加一定的投资和费用。

另外,由于A段去除了较多的BOD,可能造成炭源不足,难以实现脱氮工艺。

对于污水浓度较低的场合,B段运行较为困难,也难以发挥优势。

目前有仅采用A段的做法,效果要好于一级处理,作为一种过渡型工艺,在性能价格比上有较好的优势。

一般适用于排江、排海场合。

  2)SBR工艺

  SBR工艺早在20世纪初已有应用,由于人工管理的困难和烦琐未于推广应用。

此法集进水、曝气、沉淀在一个池子中完成。

一般由多个池子构成一组,各池工作状态轮流变换运行,单池由撇水器间歇出水,故又称为序批式活性污泥法。

  该工艺将传统的曝气池、沉淀池由空间上的分布改为时间上的分布,形成一体化的集约构筑物,并利于实现紧凑的模块布置,最大的优点是节省占地。

另外,可以减少污泥回流量,有节能效果。

典型的SBR工艺沉淀时停止进水,静止沉淀可以获得较高的沉淀效率和较好的水质。

  由SBR发展演变的又有CASS和CAST等工艺,在除磷脱氮及自动控制等方面有新的特点。

  但是,SBR工艺对自动化控制要求很高,并需要大量的电控阀门和机械撇水器,稍有故障将不能运行,一般必须引进全套进口设备。

由于一池有多种功能,相关设备不得已而闲置,曝气头的数量和鼓风机的能力必须稍大。

池子总体容积也不减小。

另外,由于撇水深度通常有1.2—2米,出水的水位必须按最低撇水水位设计,故总的水力高程较一般工艺要高1米左右,能耗将有所提高。

  SBR工艺一般适用于中小规模、土地紧张、具有引进设备条件的场合。

我国有机中间体废水治理技术现状与发展

 

概述

  随着发达国家环境保护意识与压力的日益加强,引发了有机中间体生产与贸易中心的东移,促进和推动了我国有机中间体的迅速发展,但同时也带来了严重的环境污染问题。

目前环境污染问题已成为制约我国有机中间体行业发展的“瓶颈”。

尽管有机中间体环境污染治理的根本出路在于开发与推广应用清洁工艺,但由于生产技术、经济等诸多因素的限制,大部分生产工艺都会产生大量的三废,因此采取行之有效的三废处理技术显得尤为重要和必要。

而这些有机中间体生产“三废”以废水为主,因此本文将着重介绍需首先控制的苯系有机中间体国内工业化应用的废水处理技术和国内外有发展前景的废水处理技术的开发与进展。

1有机中间体的废水处理技术

1.1氯化苯

  氯化苯是重要的氯系中间体,每吨产品排放废水1.5t,废水中主要含苯、氯苯等有机物,通常含量为100~200mg/L[1]。

  目前国内氯化苯废水治理主要采用吹脱(或汽提)、吸附与生物处理相结合的办法,由于温度升高利于氯化苯的挥发,因此在吹脱过程中,应将污水加热到一定温度,吹脱逸出的氯苯和苯冷疑回收,少量未冷凝的氯苯和苯用活性炭吸附回收,然后进行生化处理。

  在吸附过程中由于活性炭不易再生,国内外开发树脂吸附,如美国采用苯乙烯-二乙烯苯类树脂对溶液中的氯苯进行吸附,至少可以回收95%的氯苯,树脂吸附后常用稀酸、稀碱作脱附剂,脱附率为95%,不产生二次污染,其吸附能力不变[2]。

国内也进行了大量的研究工作,工业化应用前景较好。

  国外有的在吸附环节采用热解或催化氧法替代,如德国采用将氯苯与600~1000℃水蒸气反应,催化剂为含20%~99.9%的CaO和80%~0.1%的Al2O3的铝酸钙,也可加人少量的V、Cr、Mo、Fe、Ni、Cu。

氯苯与水的比率为1:

0.5~1:

4。

分解后的主要产物为烯烃、H2、CH4、CO2。

  国内济宁中银电化公司则采用清污分流、封闭循环水、提高碱洗浓度到10%以上来改善碱洗效果消除了氯苯生产中的60%废水,水耗由原来的170t/t降至42t/t,同时降低了苯耗,成本降低500元/t。

1.2硝基苯与硝基氯苯

  硝基苯与硝基氯苯是以混酸对苯或氯苯进行硝化的产物,废水中主要含有硝基苯、硝基氯苯和酚盐类物质如硝基酸钠、二硝基酸钠、三硝基酸钠等。

由于废水中有机物种类较多,目前国内普遍采用汽提、苹取或吸附再加上生化降解的综合处理方法。

为了防止固体不溶物对汽提塔的污染,在进行汽提操作以前要对废水进行必要的过滤或滗析处理;

在萃取前首先要对碱性洗水进行酸析,去除硝基酚类:

硝基苯和硝基氯苯酸析后的废水可以先用苯、氯苯萃取,萃取温度为20~80℃,pH≤5,然后有机相再和Na2CO3在pH≥8的条件下反革。

萃取液中苯或氯苯可返回硝化阶段重新再利用。

  国内有部分厂家采用吸附方法,吸附剂主要为活性炭。

近年来国内外对树脂吸附处理硝基苯和硝基氯苯废水有大量的文献报道,树脂的组成有经溶剂溶胀后交联的聚苯乙烯或丙烯酸-2-乙基乙酯,苯乙烯-二乙烯苯类聚合物等。

国内南京大学开发的CHA-Ⅲ大孔树脂用于处理硝基苯和硝基氯苯废水取得良好的效果[3]。

CHA-Ⅲ的工作吸附容量为126mg/L,处理水量为190m3/h,处理后硝基苯类化合物的浓度小于5mg/L,去除率为99%。

而且废水中的pH值对树脂吸附效果无明显影响。

使用异丙醇为脱附剂,最佳脱附温度为55℃。

另外沈春银等人采用H-103型吸附树脂处理硝基氯苯废水也有较好的效果,硝基氯苯COD去除率达95%。

由于树脂可反复使用,因而采用树脂处理废水较为经济而具有发展前景。

  国外开发出的化学处理法中具有发展前景的是湿式氧化法[4-6]。

由于硝基苯和硝基氯苯较为稳定,在一般条件下不易分解,因此湿式氧化一般在较高温度下和压力下操作,反应温度一般在325~375℃,压力为2.20×

107~3.45×

107Pa,反应时间为5min,将有机物氧化为CO2和H2O等简单的小分子化合物,在此条件下难以分解的有机物可以很容易地降到10-5mg/L。

为了降低反应温度、提高氧化效率,还可使用催化剂。

如德国专利介绍,将硝基苯或硝基氯苯废水加热到100~300℃。

在2×

105~1×

107Pa的压力下,借助催化剂,如CuO、Al2O3或硅酸镁或Cu、Cr、Zn在Al2O3氧化物的作用下氧化分解有机物,硝基苯和硝基氯苯降解90%以上。

尽管湿式氧化对技术要求很高,但作为一种方便的处理方法,值得国内关注。

  生物降解法是目前处理低浓度硝基化合物废水的经济和有效的方法[7],要加强菌种的选择和驯化,将其有机与化学或物理处理法相结合,以提高硝基物废水的处理水平。

1.3二硝基氯苯

  二硝基氯苯属于难以生物降解的有机物,目前国内主要采用活性炭或煤渣吸附处理二硝废水,处理后基本上能达到国家排放标准。

但处理成本高,每吨废水约1.5元,而且活性炭难以再生,造成二次开发污染。

  肖羽堂等提出以废铁屑对该废水进行预处理,从而使废水可生化性大大提高。

铁屑投加量为4%,将pH=5,CODcr1000~1500mg/L,色度800~1200倍的二硝废水进行预处理40~60min,CODcr和色度的去除率为65.4%和93.5%,同时废水的可生化性由m(BOD5):

m(CODcr)=0.023提高到0.47,降低了处理成本。

该法具有一定的实用性。

1.4苯胺

  苯胺是重要的有机中间体,每吨产品产生0.2t废水,含苯胺约15g/L,毒性较大。

  苯胺生产废水经典的处理方法是采用厌氧细菌的生化处理法,但该法需在进生化池前用共沸蒸馏法或有机溶剂如苯、甲苯进行萃取预处理,将废水中的苯胺降低到5mg/L以下,过程的经济性不是很理想,处理成本高。

  南京四力公司、南化公司磷肥厂用CHA-101树脂在室温下吸附处理苯胺生产废水,据报道可达到国家排放标准,并回收了苯胺、硝基苯[8]。

  清华大学采用络合萃取法对国内多家含苯胺废水进行处理[9],经2~3级逆流萃取后,废水中的苯胺含量由15g/L降低到0.3mg/L以下,直接达到排放标准,并可回收99%的苯胺,且具有一定的经济效益。

另外他们还开发出双溶剂络合萃取剂,据称能将废水中的硝基苯含量降到10-6mg/L以下,工业化应用前景广阔。

1.54-氨基二苯胺

  4-氨基二苯胺是重要的橡胶助剂、医药和染料中间体。

目前国内生产工艺多为较落后的甲酸苯胺法,而且缩合后还原过程均采用硫化碱还原,废水量大,污染严重。

其中缩合母液和还原母液废水占整个工艺的95%以上。

  国外一般采用活性炭吸附,过滤,然后焚烧的方法处理缩合母液中的有机物。

也有用苯、甲苯等溶剂萃取的方法回收有机物,但效率都不高,处理后的高含盐废水仍无法处理。

  姜力夫等对缩合废水采用浓缩结晶的方法回收KCI,然后焚烧除去有机物,再用离子交换树脂法生产K2CO3回用于生产工艺。

还原母液尚未见有效的治理方法的介绍。

1.6邻苯二胺

  邻苯二胺是重要的农药中间体,国内主要采用硫化钠还原邻硝基苯胺工艺生产,每吨产品产生污水8t,邻苯二胺浓度6000~9000mg/L,还有大量硝基物、含硫盐类等,其CODcr高达4×

104mg/L。

污染严重。

  江苏化工学院和江阴永联集团用H-103树脂吸附处理合13000mg/L邻苯二胺的废水,出水邻苯二胺降到350mg/L,用稀盐酸为脱附剂可回收90%的邻苯二胺,CODcr去除率95%[10]。

  沈阳化工综合利用研究所开发出以磷酸三丁脂为萃取剂回收废水中邻苯二胶的技术,回收率85%,还可回收硫化钠,以建30t/d的规模计算,年盈利可达21.7万元。

据介绍该技术可与中分式萃取塔结合,实现多级连续萃取,效果会更好。

  齐兵等人应用液膜法处理高浓度邻苯二胺废水效果较好,主要过程包括制备乳液、液膜萃取、澄清分离等过程。

选用氯仿为传质介质,将废水中邻苯二胺以盐类的形式回收,乳液可以复用或破乳后再制乳。

具有较好的发展前景。

1.7苯酚生产废水

  苯酚是一种重要的基本有机合成原料,我国近年来发展较快,目前苯酚生产的废水年排放

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1