AQME管理系统维修手册.docx

上传人:b****3 文档编号:12928411 上传时间:2023-04-22 格式:DOCX 页数:129 大小:527.34KB
下载 相关 举报
AQME管理系统维修手册.docx_第1页
第1页 / 共129页
AQME管理系统维修手册.docx_第2页
第2页 / 共129页
AQME管理系统维修手册.docx_第3页
第3页 / 共129页
AQME管理系统维修手册.docx_第4页
第4页 / 共129页
AQME管理系统维修手册.docx_第5页
第5页 / 共129页
点击查看更多>>
下载资源
资源描述

AQME管理系统维修手册.docx

《AQME管理系统维修手册.docx》由会员分享,可在线阅读,更多相关《AQME管理系统维修手册.docx(129页珍藏版)》请在冰豆网上搜索。

AQME管理系统维修手册.docx

AQME管理系统维修手册

前言………………………………………………………………2

第一章电喷系统维修须知………………………………………3

第二章ME17系统介绍……………………………………………7

第三章ME17系统零部件结构、原理及故障分析………………12

第四章ME17系统根据故障代码进行检修的诊断流程…………42

第五章ME17系统根据故障现象进行检修的诊断流程…………56

第六章BYD-ED400汽车故障诊断仪使用说明………………66

第七章附件……………………………………………………77

前言

随着我国国民经济的发展,汽车保有量不断增加,环保法规也在不断地严格化。

由于闭环控制的汽油定量技术跟三效催化转化器相结合有可能将汽车排放的有毒物质减少92%以上,所以用电子控制汽油喷射技术取代化油器已经成为不可逆转的发展趋势。

这表明,在中国汽车行业中,化油器发动机的时代已经结束,电子控制汽油喷射发动机的时代已经开始。

比亚迪473Q发动机配备的发动机管理系统是联合汽车电子有限公司提供的MOTRONIC系统。

联合汽车电子有限公司作为国内最大、最有影响的汽车发动机电子控制汽油喷射系统的供应商,从1996年开始向国内各大汽车公司提供从德国BOSCH公司引进的MOTRONIC系列电喷系统及其零部件。

所谓MOTRONIC,是一种商品名,并不具备特定的含义。

MOTRONIC系统具有一定的技术特点,这就是,发动机的燃油定量电子控制和点火正时电子控制系统合二为一,原来分开的两个系统共享一套传感器、电子控制单元和电源装置。

不言而喻,MOTRONIC系统都具备点火正时电子控制功能。

这使得发动机的性能有了明显的改善。

MOTRONIC系统跟其它电子控制汽油喷射系统一样,一方面可以大幅度地降低汽车排放,另一方面也给只熟悉传统化油器发动机的维修人员在发动机维修的时候带来了困难。

汽车维修人员对化油器发动机觉得看得见、摸得到。

但是,电子控制汽油喷射发动机中不见了人们原先熟悉的一些机械组件,代之以各种电子组件。

原先,维修人员甚至驾驶人员有可能自行调整化油器或分电器;但是,现在数据储存在计算机芯片里,一般维修人员并不能通过电子仪器对数据进行修改来排除故障。

系统的电子组件出了故障,从外表上未必看得出来,往往要利用各种仪器进行测试才能够识别。

所以维修人员在对电子控制汽油喷射发动机进行维修时往往感到无从下手。

根据这种现实状况,我们编写了本维修手册,希望在两个方面发挥作用:

一方面,帮助发动机厂或整车厂的工程师们更深入地了解发动机电子控制系统;另一方面,帮助各地维修人员修理电子控制汽油喷射发动机。

本手册首先介绍电子控制汽油喷射系统的组成和工作原理。

接着详细地介绍系统各个零部件的构造和性能。

一般来说,在对电子控制汽油喷射系统进行维修的过程中,故障诊断仪是必不可少的工具。

故障诊断仪能够把储存在ECU中的故障信息记录调出来。

为了帮助读者深入理解每一种故障码的真正含义,本手册列出了ECU设置各种故障信息记录的条件。

但是,许多故障却并非根据故障信息记录就可以直接确定的,而是需要进行一系列的分析才能找到真正的故障所在。

所以,本手册用相当多的篇幅描述如何根据故障信息记录来找出真正的故障。

由于电子控制组件的存在,给发动机的故障原因赋予了新的内容。

换言之,同一种发动机故障既可能由于机械原因,也可能由于电子组件的原因引起。

而且,发动机的实际故障并不是仅仅利用故障诊断仪就能够诊断的。

因此,本手册也从发动机的症状出发,联系电子控制系统来查找故障所在。

第一章电喷系统维修须知

第一节一般维修须知

1.1只允许使用数字万用表对电喷系统进行检查工作。

1.2维修作业请使用正品零部件,否则无法保证电喷系统的正常工作。

1.3维修过程中,只能使用无铅汽油。

1.4请遵守规范的维修诊断流程进行维修作业。

1.5维修过程中禁止对电喷系统的零部件进行分解拆卸作业。

1.6维修过程中,拿电子组件(ECU、传感器等)时,要非常小心,不能让它们掉到地上。

1.7树立环境保护意识,对维修过程中产生的废弃物进行有效地处理。

第二节维修过程注意事项

2.1不要随意将电喷系统的任何零部件或其接插件从其安装位置上拆下,以免意外损坏或水份、油污等异物进入接插件内,影响电喷系统的正常工作。

2.2当断开和接上接插件时,一定要将点火开关置于关闭位置,否则会损坏电器组件。

2.3在进行故障的热态工况模拟和其它有可能使温度上升的维修作业时,决不要使电子控制单元的温度超过80℃。

2.4电喷系统的供油压力较高(350kPa左右),所有燃油管路都是采用耐高压燃油管。

即使发动机没有运转,油路中也保持较高的燃油压力。

所以在维修过程中要注意不要轻易拆卸油管,在需对燃油系统进行维修的场合时,拆卸油管前应对燃油系统进行泄压处理,泄压方法如下:

起动发动机使其怠速运转,连接诊断仪,进入“执行器测试”关闭燃油泵,直到发动机自行熄灭。

油管的拆卸和燃油滤清器的更换应在通风良好的地方由专业维修人员进行。

2.5从燃油箱中取下电动燃油泵时不要给油泵通电,以免产生电火花,引起火灾。

2.6燃油泵不允许在干态下或水里进行运转试验,否则会缩减其使用寿命,另外燃油泵的正负极切不可接反。

2.7对点火系统进行检查时,只有在必要的时候才进行跳火花检测,并且时间要尽可能短,检测时不能打开电子节气门,否则会导致大量未燃烧的汽油进入排气管,损坏三元催化器。

2.8由于怠速的调节完全由电喷系统完成,不需要人工调节。

电子节气门体总成的油门限位螺钉在生产厂家出厂时已调好,不允许用户随意改变其初始位置。

2.9连接蓄电池时蓄电池的正负极不能接错,以免损坏电子组件,本系统采用负极搭铁。

2.10发动机运转时,不允许拆卸蓄电池电缆。

2.11在汽车上实施电焊前,必须将蓄电池正极、负极电缆线及电子控制单元拆卸下来。

2.12不要用刺穿导线表皮的方法来检测零部件输入输出的电信号。

第三节维修工具一览

工具名称:

电喷系统故障诊断仪

功能:

读取/清除电喷系统故障码,观察数据流,零部件动作测试等。

工具名称:

电喷系统转接器

功能:

检查电子控制单元每一针脚的电信号,检查线路的情况等。

工具名称:

点火正时灯

功能:

检查发动机点火正时等。

工具名称:

数字万用表

功能:

检查电喷系统中的电压、电流、电阻等特征参数。

工具名称:

真空表

功能:

检查进气歧管中压力情况。

工具名称:

气缸压力表

功能:

检查各个气缸的缸压情况。

工具名称:

燃油压力表

功能:

检查燃油系统的压力情况,判定燃油系统中燃油泵及燃油压力调节器的工作情况。

工具名称:

尾气分析仪

功能:

检查车辆尾气排放情况,有助于对电喷系统的故障判断。

工具名称:

喷油器清洗分析仪

功能:

可对喷油器进行清洗分析作业。

第四节手册中出现的缩略词注释

DG

曲轴位置传感器(发动机转速传感器)

DS-S-TF

进气压力温度传感器

ECU

电子控制单元(俗称:

电脑)

EKP

燃油泵

EMS

发动机管理系统

EV

喷油器

LSH

加热型氧传感器

KS

爆震传感器

KSZ

燃油分配管总成

KVS

燃油分配管

PG

凸轮轴位置传感器(也称相位传感器)

TEV

碳罐控制阀

TF-W

冷却液温度传感器

ZSK

点火线圈

第二章ME17系统介绍

第一节系统基本原理

1.1系统概述:

ME17-Motronic发动机管理系统

发动机管理系统通常主要由传感器、微处理器(ECU)、执行器三个部分组成,对发动机工作时的吸入空气量、喷油量和点火提前角进行控制。

基本结构如图2-1所示。

诊断

诊断

图2-1发动机电控系统的组成

在发动机电控系统中,传感器作为输入部分,用于测量各种物理信号(温度、压力等),并将其转化为相应的电信号;ECU的作用是接受传感器的输入信号,并按设定的程序进行计算处理,产生相应的控制信号输出到功率驱动电路,功率驱动电路通过驱动各个执行器执行不同的动作,使发动机按照既定的控制策略进行运转;同时ECU的故障诊断系统对系统中各部件或控制功能进行监控,一旦探测到故障并确认后,则存储故障码,调用“跛行回家”功能,当探测到故障被消除,则正常值恢复使用。

ME17发动机电子控制管理系统的最大特点是采用基于扭矩的控制策略。

扭矩为主控制策略的主要目的是把大量各不相同的控制目标联系在一起。

这是根据发动机和车辆型号来灵活选择把各种功能集成在ECU的不同变型中的唯一方法。

ME17发动机电控系统的基本组件有:

电子控制器(ECU)

电子节气门体总成

进气压力/温度传感器

喷油器

冷却液温度传感器

电动燃油泵

电子节气门体总成

燃油压力调节器

凸轮轴位置传感器

油泵支架

曲轴位置传感器

燃油分配管

爆震传感器

碳罐控制阀

氧传感器

点火线圈

ME17-Motronic发动机管理系统是一个电子操纵的汽油机控制系统,它提供许多有关操作者和车辆或设备方面的控制特性,系统采用开环和闭环(反馈)控制相结合的方式,对发动机的运行提供各种控制信号。

应用物理模型的发动机的基本管理功能

✧以扭矩为基础的系统结构

✧由进气压力传感器/空气流量传感器确定气缸负荷量

✧在静态与动态状况下改进了的混合气控制功能

✧?

闭环控制

✧燃油逐缸顺序喷射

✧点火正时,包括逐缸爆震控制

✧排放控制功能

✧催化器加热

✧碳罐控制

✧怠速控制

✧跛行回家

1.2扭矩结构:

基于扭矩控制的ME17系统

在ME17以扭矩为主的发动机管理系统中,发动机的所有内部需求和外部需求都用发动机的扭矩或效率要求来定义,如图2-2所示。

通过将发动机的各种需求转化为扭矩或效率的控制变量,然后这些变量首先在中央扭矩需求协调器模块中进行处理。

ME17系统可将这些相互矛盾的要求按优先顺序排列,执行最重要的一个要求,通过扭矩转化模块得到所需的喷油时间、点火正时等发动机控制参数。

该控制变量的执行对其它变量没有影响。

这就是以扭矩为主控制系统的优点。

同样在进行发动机匹配时,由于基于扭矩控制系统具有的变量独立性,在匹配发动机特性曲线和脉谱图时只依靠发动机数据,与其它功能函数和变量没有干涉,因此避免了重复标定,简化了匹配过程,降低了匹配成本。

22-2ME17以扭矩为基础的系统结构

和以往的M系列发动机电喷管理系统相比,ME17系统的主要特点为:

✧新的以扭矩为变量的发动机功能结构,与其它系统最易兼容,可扩展性强;

✧新的模块化的软件结构和硬件结构,可移植性强;

✧基于模型的发动机基本特性,相互独立,简化了标定过程;

✧带有凸轮轴位置传感器,顺序燃油喷射有助于改善排放;

✧通过对各种扭矩要求的集中协调以改善驾驶性能;

✧系统可根据将来的需要,如:

今后的排放法规、电子节气门等,进行扩充。

第二节控制信号:

ME17系统输入/输出信号

ME17系统中ECU的主要传感器输入信号包括:

●进气压力信号

●进气温度信号

●电子节气门转角信号

●冷却液温度信号

●发动机转速信号

●相位信号

●爆震传感器信号

●氧传感器信号

●车速信号

●空调压力信号

以上信息进入ECU后经处理产生所需的执行器控制信号,这些信号在输出驱动电路中被放大,并传输到各对应执行器中,这些控制信号包括:

●电子节气门开度

●喷油正时和喷油持续时间

●油泵继电器

●碳罐控制阀开度

●点火线圈闭合角和点火提前角

●冷却风扇继电器

第三节系统功能介绍

3.1起动控制

在起动过程中,要采取特殊计算方法来控制充量、喷油和点火正时。

该过程的开始阶段,进气歧管内的空气是静止的,进气歧管内部压力显示为周围大气压力。

在相似的过程中,特定的“喷油正时”被指定为初始喷射脉冲。

燃油喷射量根据发动机的温度而变化,以促使进气歧管和气缸壁上的油膜的形成,因此,当发动机达到一定转速前,要加浓混合气。

一旦发动机开始运行,系统立即开始减少起动加浓,直到起动工况结束时(600…700min-1)完全取消起动加浓。

在起动工况下点火角也不断调整。

随着发动机温度、进气温度和发动机转速而变。

3.2暖机和三元催化器的加热控制

发动机在低温起动后,气缸充量、燃油喷射和电子点火都被调整以补偿发动机更高的扭矩要求;该过程继续进行直到升到适当的温度阈值。

在该阶段中,最重要的是三元催化器的快速加热,因为迅速过渡到三元催化器开始工作可大大减少废气排放。

在此工况下,采用适度推迟点火提前角的方法利用废气进行“三元催化器加热”。

3.3加速/减速和倒拖断油控制

喷射到进气歧管中的燃油有一部分不会及时到达气缸参加接着的燃烧过程。

相反,它在进气歧管壁上形成一层油膜。

根据负荷的提高和喷油持续时间的延长,储存在油膜中的燃油量会急剧增加。

当电子节气门开度增加,部分喷射的燃油被该油膜吸收。

所以,必须喷射相应的补充燃油量对其补偿并防止混合气在加速时变稀。

一旦负荷系数降低,进气歧管壁上燃油膜中包含的附加燃油会重新释放,那么在减速过程中,必须减少相应的喷射持续时间。

倒拖或牵引工况指发动机在飞轮处提供的功率是负值的情况。

在这种情况下,发动机的摩擦和泵气损失可用来使车辆减速。

当发动机处于倒拖或牵引工况时,喷油被切断以减少燃油消耗和废气排放,更重要的是保护三元催化器。

一旦转速下降到怠速以上特定的恢复供油转速时,喷油系统重新供油。

实际上,ECU的程序中有一个恢复转速的范围。

它们根据发动机温度,发动机转速动态变化等参数的变化而不同,并且通过计算防止转速下降到规定的最低阈值。

一旦喷射系统重新供油,系统开始使用初次喷射脉冲供给补充燃油,并在进气歧管壁上重建油膜。

恢复喷油后,扭矩为主的控制系统使发动机扭矩的增加缓慢而平稳(平缓过渡)。

3.4怠速控制

怠速时,发动机不提供扭矩给飞轮。

为保证发动机在尽可能低的怠速下稳定运行,闭环怠速控制系统必须维持产生的扭矩与发动机“功率消耗”之间的平衡。

怠速时需要产生一定的功率,以满足各方面的负荷要求。

它们包括来自发动机曲轴和配气机构以及辅助部件,如水泵的内部摩擦。

ME17系统以扭矩为主控制策略依据闭环怠速控制来确定在任何工况下维持要求的怠速转速所需的发动机输出扭矩。

该输出扭矩随着发动机转速的降低而升高,随发动机转速的升高而降低。

系统通过要求更大扭矩以响应新的“干扰因素”,如空调压缩机的开停或自动变速器换档。

在发动机温度较低时,为了补偿更大的内部磨擦损失和/或维持更高的怠速转速,也需要增加扭矩。

所有这些输出扭矩要求的总和被传递到扭矩协调器,扭矩协调器进行处理计算,得出相应的充量密度,混合气成分和点火正时。

3.5?

闭环控制

三元催化器中的排气后处理是降低废气中有害物质浓度的有效方法。

三元催化器可降低碳氢(HC),一氧化碳(CO)和氮氧化物(NOx)达98%或更多,把它们转化为水(H2O),二氧化碳(CO2)和氮(N2)。

不过只有在发动机过量空气系数?

=1附近很狭窄的范围内才能达到这样高的效率,?

闭环控制的目标就是保证混合气浓度在此范围内。

?

闭环控制系统只有配备氧传感器才能起作用。

氧传感器在三元催化器侧的位置监测废气中的氧含量,稀混合气(?

?

1)产生约100mV的传感器电压,浓混合气(?

?

1)产生约900mV的传感器电压。

当?

=1时,传感器电压有一个跃变。

?

闭环控制对输入信号作出响应(?

?

1=混合气过稀,?

?

1=混合气过浓)修改控制变量,产生修正因子作为乘数以修正喷油持续时间。

3.6蒸发排放控制

由于外部辐射热量和回油热量传递的原因,油箱内的燃油被加热,并形成燃油蒸汽。

由于受到蒸发排放法规的限制,这些含有大量HC成分的蒸汽不允许直接排入大气中。

在系统中燃油蒸汽通过导管被收集在活性碳罐中,并在适当的时候通过吹洗进入发动机参与燃烧过程。

吹洗气流的流量是由ECU控制碳罐控制阀来实现的。

该控制仅在?

闭环控制系统闭环工作情况下才工作。

3.7爆震控制

系统通过安装在发动机适当位置的爆震传感器检测爆震产生时的特性振动,转换成电子信号以便传输到ECU中并进行处理。

ECU使用特殊的处理算法,在每个气缸的每个燃烧循环中检测是否有爆震现象发生。

一旦检测到爆震则触发爆震闭环控制。

当爆震危险消除后,受影响的气缸的点火逐渐重新提前到预定的点火提前角。

爆震控制的阈值对不同的工况和不同标号的燃油具有良好的适应性。

第四节系统故障诊断功能介绍

4.1故障信息记录

电子控制单元不断地监测着传感器、执行器、相关的电路、故障指示灯和蓄电池电压等等,乃至电子控制单元本身,并对传感器输出信号、执行器驱动信号和内部信号(如?

闭环控制、冷却液温度、爆震控制、怠速转速控制和蓄电池电压控制等)进行可信度检测。

一旦发现+某个环节出现故障,或者某个信号值不可信,电子控制单元立即在RAM的故障存储器中设置故障信息记录。

故障信息记录以故障码的形式储存,并按故障出现的先后顺序显示。

图2-3电喷系统故障诊断原理图

4.2诊断仪连接

本系统采用“K”线通讯协议,并采用ISO9141-2标准诊断接头,见图2-4。

这个标准诊断接头是固定地连接在发动机线束上的。

用与发动机管理系统EMS的是标准诊断接头上的4、7和16号针脚。

标准诊断接头的4号针脚连接车上的地线;7号针脚连接ECU的71号针脚,即发动机数据“K”线;16号针脚连接蓄电池正极。

图2-4ISO9141-2标准诊断接头

ECU通过“K”线可与外接诊断仪进行通信,并可进行相关操作(各功能作用及诊断仪操作详见“ME17诊断仪使用介绍”)。

第五节项目相关问题说明

系统特点:

多点顺序喷射系统;

新的以扭矩为变量的发动机功能结构,与其它系统最易兼容,可扩展性强;

新的模块化的软件结构和硬件结构,可移植性强;

采用判缸信号(凸轮轴位置传感器);

采用信号盘识别转速信号(曲轴位置传感器);

实现怠速扭矩闭环控制;

爆震控制(爆震传感器KS-1-K);

具有对催化器加热、保护的功能;

具有陂行回家功能;

具备闪烁码功能等等。

第三章ME17系统零部件结构、原理及故障分析

第一节发动机管理系统元件布置介绍

473Q发动机

A

A:

电子节气门体总成C:

进气温度压力传感器

D:

冷却液温度传感器E:

凸轮轴位置传感器F:

点火线圈

G:

爆震传感器H:

曲轴位置传感器

I:

前氧传感器J:

碳罐控制阀

K:

喷油嘴L:

发动机ECM

第二节进气压力温度传感器

简图和针脚

图3-1进气压力温度传感器图3-2进气压力温度传感器电路图

针脚定义:

1#接地;

2#进气温度信号输出;

3#接5V;

4#进气压力信号输出。

图3-3进气压力温度传感器插头

1.1安装位置

这个传感器由两个传感器即进气歧管绝对压力传感器和进气温度传感器组合而成,装在进气歧管上。

1.2工作原理

进气岐管绝对压力传感组件由一片硅芯片组成。

在硅芯片上蚀刻出一片压力膜片。

压力膜片上有4个压电电阻,这4个压电电阻作为应变组件组成一个惠斯顿电桥。

硅芯片上除了这个压力膜片以外,还集成了信号处理电路。

硅芯片跟一个金属壳体组成一个封闭的参考空间,参考空间内的气体绝对压力接近于零。

这样就形成了一个微电子机械系统。

硅芯片的活性面上经受着一个接近于零的压力,它的背面上经受着通过一根接管引入的、待测的进气岐管绝对压力。

硅芯片的厚度只有几个微米(?

m),所以进气歧管绝对压力的改变会使硅芯片发生机械变形,4个压电电阻跟着变形,其电阻值改变。

通过硅芯片的信号处理电路处理后,形成与压力成线性关系的电压信号。

进气温度传感组件是一个负温度系数(NTC)的电阻,电阻随进气温度变化,此传感器输送给控制器一个表示进气温度变化的电压。

1、密封圈,2、不锈钢衬套,3、PCB板,

4、传感组件,5、壳体,6、压力支架,

7、焊接连接,8、粘结剂连接

图3-4进气歧管绝对压力和进气温度传感器剖面图

1.3技术特性参数

1.3.1.极限数据

单位

最小

典型

最大

耐受电源电压

16

V

耐受压力

500

kPa

耐受储存温度

-40

+130

?

C

1.3.2.特性数据

单位

最小

典型

最大

压力测试范围

20

115

kPa

运行温度

-40

125

?

C

运行电源电压

4.5

5.0

5.5

V

在US=5.0V时的电流

6.0

9.0

12.5

mA

输出电路的负荷电流

-0.1

0.1

mA

对地或对蓄电池的负载电阻

50

k?

响应时间

0.2

ms

重量

27

g

1.3.3.压力传感器的传递函数

UA=(c1pabs+c0)Us

式中,UA=信号输出电压(V)

US=电源电压(V)

pabs=绝对压力(kPa)

c0=-9.4/95

c1=0.85/95(1/kPa)

由上式看出,在大气压力下,压力传感器的信号输出电压接近电源电压。

如果电源电压为5V,则电子节气门全开时压力传感器的信号输出电压等于4V左右。

1.3.4.温度传感器的极限数据

储存温度:

-40/+130?

C

25?

C承载能力:

100mW

1.3.5.温度传感器的特性数据

运行温度:

-40/+125?

C

额定电压:

以前置电阻1k?

在5V下运行,或以?

1mA的测试电流运行

20?

C额定电阻:

2.5k?

?

5%

在空气中的温度时间系数?

63,v=6m/s:

?

45s

1.4安装注意事项

本传感器设计成安装在汽车发动机进气歧管的平面上。

压力接管和温度传感器一起突出于进气歧管之中,用一个O形圈实现对大气的密封。

如果采取合适的方式安装到汽车上(从进气歧管上提取压力,压力接管往下倾斜等等),可以确保不会在压力敏感组件上形成冷凝水。

进气歧管上的钻孔和固定必须按照供货图进行,以便确保长久的密封并且能够耐受介质的侵蚀。

接头电气连接的可靠接触除了主要受零部件接头的影响以外,还跟线束上与其相配的接头的材料质量和尺寸精度有关。

1.5故障现象及判断方法

●故障现象:

熄火、怠速不良等。

●一般故障原因:

1、使用过程有不正常高压或反向大电流;2、维修过程使真空组件受损。

●维修注意事项:

维修过程中禁止用高压气体向真空组件冲击;发现故障更换传感器的时候注意检查发电机输出电压和电流是否正常。

●简易测量方法:

温度传感器部分:

(卸下接头)把数字万用表打到欧姆档,两表笔分别接传感器1#、2#针脚,20℃时额定电阻为2.5kΩ±5%,其它对应的电阻数值可由图3-5特征曲线量出。

测量时也可用模拟的方法,具体为用电吹风向传感器送风(注意不可靠得太近),观察传感器电阻的变化,此时电阻应下降。

压力传感器部分:

(接上接头)把数字万用表打到直流电压档,黑表笔接地,红表笔分别与3#、4#针脚连接。

怠速状态下,3#针脚应有5V的参考电压,4#针脚电压为1.3V左右(具体数值与车型有关);空载状态下,慢慢打开电子节气门,4#针脚的电压变化不大;快速打开电子节气门,4#针脚的电压可瞬间达到4V左右(具体数值与车型有关),然后下降到1.5V左右(具体数值与车型有关)。

图3-5进气温度传感器NTC电阻特征曲线

第三节电子节气门体总成

简图和针脚

图3-6电子节气门体总成

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 法学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1