中考数学应用题 1.docx

上传人:b****3 文档编号:12871948 上传时间:2023-04-22 格式:DOCX 页数:40 大小:166.47KB
下载 相关 举报
中考数学应用题 1.docx_第1页
第1页 / 共40页
中考数学应用题 1.docx_第2页
第2页 / 共40页
中考数学应用题 1.docx_第3页
第3页 / 共40页
中考数学应用题 1.docx_第4页
第4页 / 共40页
中考数学应用题 1.docx_第5页
第5页 / 共40页
点击查看更多>>
下载资源
资源描述

中考数学应用题 1.docx

《中考数学应用题 1.docx》由会员分享,可在线阅读,更多相关《中考数学应用题 1.docx(40页珍藏版)》请在冰豆网上搜索。

中考数学应用题 1.docx

中考数学应用题1

中考数学应用题专项解答

列方程(组)解应用题是中考的必考内容,必是中考的热点考题之一,列方程(组)解应用题的关键与难点是如何找到能够表示题目全部含义的相等关系,所谓“能表示全部含义”就是指在相等关系中,题目所给出的全部条件(包括所求的量)都要给予充分利用,不能漏掉,但也不能把同一条件重复使用,应用题中的相等关系通常有两种,一种是通过题目的一些关键词语表现出来的明显的相等关系,如“多”、“少”、“增加”、“减少”、“快”、“慢”等,另一种是题目中没有明显给出而题意中又包含着的隐含相等关系,这也是中考的重点和难点,此时需全面深入的理解题意,结合日常生活常识和自然科学知识才能做到.

解应用题的一般步骤:

解应用题的一般步骤可以归结为:

“审、设、列、解、验、答”.

1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意.

2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目).

3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.

4、“解”就是解方程,求出未知数的值.

5、“验”就是验解,即检验方程的解能否保证实际问题有意义.

6、“答”就是写出答案(包括单位名称).

应用题类型:

近年全国各地的中考题中涉及的应用题类型主要有:

行程问题,工程问题,增产率问题,百分比浓度问题,和差倍分问题,与函数综合类问题,市场经济问题等.

几种常见类型和等量关系如下:

1、行程问题:

基本量之间的关系:

路程=速度×时间,即:

常见等量关系:

(1)相遇问题:

甲走的路程+乙走的路程=原来甲、乙相距的路程.

(2)追及问题(设甲速度快):

同时不同地:

甲用的时间=乙用的时间;

甲走的路程-乙走的路程=原来甲、乙相距的路程.

同地不同时:

甲用的时间=乙用的时间-时间差;

甲走的路程=乙走的路程.

2、工程问题:

基本量之间的关系:

工作量=工作效率×工作时间.

常见等量关系:

甲的工作量+乙的工作量=甲、乙合作的工作总量.

3、增长率问题:

基本量之间的关系:

现产量=原产量×(1+增长率).

4、百分比浓度问题:

基本量之间的关系:

溶质=溶液×浓度.

5、水中航行问题:

基本量之间的关系:

顺流速度=船在静水中速度+水流速度;

逆流速度=船在静水中速度-水流速度.

6、市场经济问题:

基本量之间的关系:

商品利润=售价-进价;

商品利润率=利润÷进价;

利息=本金×利率×期数;

本息和=本金+本金×利率×期数.

一元一次方程方程应用题归类分析

列方程解应用题,是初中数学的重要内容之一。

许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.

1.和、差、倍、分问题:

(1)倍数关系:

通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:

通过关键词语“多、少、和、差、不足、剩余……”来体现。

 例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?

分析:

等量关系为:

解:

设1990年6月底每10万人中约有x人具有小学文化程度

答:

略.

2.等积变形问题:

“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积。

 例2.用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为

内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?

(结果保留整数

分析:

等量关系为:

圆柱形玻璃杯体积=长方体铁盒的体积

下降的高度就是倒出水的高度

解:

设玻璃杯中的水高下降xmm

 3.劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变;

(3)只有调出没有调入,调出部分变化,其余不变。

 例3.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

分析:

列表法。

 

每人每天

人数

数量

大齿轮

16个

x人

16x

小齿轮

10个

等量关系:

小齿轮数量的2倍=大齿轮数量的3倍

解:

设分别安排x名、

名工人加工大、小齿轮

 4.比例分配问题:

这类问题的一般思路为:

设其中一份为x,利用已知的比,写出相应的代数式。

常用等量关系:

各部分之和=总量。

 例4.三个正整数的比为1:

2:

4,它们的和是84,那么这三个数中最大的数是几?

解:

设一份为x,则三个数分别为x,2x,4x

分析:

等量关系:

三个数的和是84

 5.数字问题

(1)要搞清楚数的表示方法:

一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:

100a+10b+c。

(2)数字问题中一些表示:

两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。

例5.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数

等量关系:

原两位数+36=对调后新两位数

解:

设十位上的数字X,则个位上的数是2x,

10×2x+x=(10x+2x)+36解得x=4,2x=8.

答:

略.

 6.工程问题:

 工程问题中的三个量及其关系为:

工作总量=工作效率×工作时间

经常在题目中未给出工作总量时,设工作总量为单位1。

 例6.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

分析设工程总量为单位1,等量关系为:

甲完成工作量+乙完成工作量=工作总量。

  解:

设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(

+

)×3+

=1,  解这个方程,

+

+

=1     

12+15+5x=605x=33   ∴x=

=6

  答:

略.

 7.行程问题:

  

(1)行程问题中的三个基本量及其关系:

路程=速度×时间。

  

(2)基本类型有

    ①相遇问题;②追及问题;常见的还有:

相背而行;行船问题;环形跑道问题。

  (3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。

并且还常常借助画草图来分析,理解行程问题。

   例7.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

  

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?

  

(2)两车同时开出,相背而行多少小时后两车相距600公里?

  (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?

  (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?

  (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?

  此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

故可结合图形分析。

(1)分析:

相遇问题,画图表示为:

等量关系是:

慢车走的路程+快车走的路程=480公里。

  

解:

设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480  

解这个方程,230x=390        

∴x=1

答:

略.

分析:

相背而行,画图表示为:

  

等量关系是:

两车所走的路程和+480公里=600公里。

  解:

设x小时后两车相距600公里,

由题意得,(140+90)x+480=600解这个方程,230x=120        

∴x=

  答:

略.

  (3)分析:

等量关系为:

快车所走路程-慢车所走路程+480公里=600公里。

  解:

设x小时后两车相距600公里,由题意得,(140-90)x+480=600         50x=120       

∴x=2.4

  答:

略.

 分析:

追及问题,画图表示为:

等量关系为:

快车的路程=慢车走的路程+480公里。

  

解:

设x小时后快车追上慢车。

由题意得,140x=90x+480  

解这个方程,50x=480 ∴x=9.6

答:

略.

 分析:

追及问题,等量关系为:

快车的路程=慢车走的路程+480公里。

解:

设快车开出x小时后追上慢车。

由题意得,140x=90(x+1)+480

 50x=570 解得,x=11.4  

答:

略.

 8.利润赢亏问题

(1)销售问题中常出现的量有:

进价、售价、标价、利润等

(2)有关关系式:

商品利润=商品售价—商品进价=商品标价×折扣率—商品进价

商品利润率=商品利润/商品进价

商品售价=商品标价×折扣率

例8.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

分析:

探究题目中隐含的条件是关键,可直接设出成本为X元

进价

折扣率

标价

优惠价

利润

x元

8折

(1+40%)x元

80%(1+40%)x

15元

等量关系:

(利润=折扣后价格—进价)折扣后价格-进价=15

解:

设进价为X元,80%X(1+40%)—X=15,X=125

答:

略.

 9.储蓄问题

⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

利息的20%付利息税

⑵利息=本金×利率×期数

本息和=本金+利息

利息税=利息×税率(20%)

例9.某同学把250元钱存入银行,整存整取,存期为半年。

半年后共得本息和252.7元,求银行半年期的年利率是多少?

(不计利息税)

分析:

等量关系:

本息和=本金×(1+利率)

解:

设半年期的实际利率为x,

250(1+x)=252.7,

x=0.0108

所以年利率为0.0108×2=0.0216

练习题

1、(2013•黔西南州)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.

(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?

(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?

考点:

一元一次不等式组的应用;一元一次方程的应用.

分析:

(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.

(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.

解答:

解:

(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,

5x+4(x﹣20)=820,

x=100,

x﹣20=80,

购买A型100元,B型80元;

(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,

∴20<m≤22,

而m为整数,所以m为21或22.

当m=21时,60﹣m=39;

当m=22时,60﹣m=38.

所以有两种购买方案:

方案一购买A21块,B39块、

方案二购买A22块,B38块.

点评:

本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.

2、(2013•莱芜)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.

(1)两种跳绳的单价各是多少元?

(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?

考点:

一元一次不等式组的应用;二元一次方程组的应用.

专题:

计算题.

分析:

(1)设长跳绳的单价是x元,短跳绳的单价为y元,根据长跳绳的单价比短跳绳单价的两倍多4元;购买2条长跳绳与购买5条短跳绳的费用相同,可得出方程组,解出即可;

(2)设学校购买a条长跳绳,购买资金不超过2000元,短跳绳的条数不超过长跳绳的6倍,可得出不等式组,解出即可.

解答:

解:

(1)设长跳绳的单价是x元,短跳绳的单价为y元.

由题意得:

解得:

.所以长跳绳单价是20元,短跳绳的单价是8元.

(2)设学校购买a条长跳绳,

由题意得:

解得:

∵a为正整数,

∴a的整数值为29,3,31,32,33.

所以学校共有5种购买方案可供选择.

点评:

本题考查了一元一次不等式及二元一次方程组的应用,解答本题的关键仔细审题,设出未知数,找到其中的等量关系和不等关系.

3、(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:

运动鞋

价格

进价(元/双)

m

m﹣20

售价(元/双)

240

160

已知:

用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.

(1)求m的值;

(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?

(3)在

(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?

考点:

一次函数的应用;分式方程的应用;一元一次不等式组的应用.37

分析:

(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;

(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;

(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.

解答:

解:

(1)依题意得,

=

整理得,3000(m﹣20)=2400m,

解得m=100,

经检验,m=100是原分式方程的解,

所以,m=100;

(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,

根据题意得,

解不等式①得,x≥95,

解不等式②得,x≤105,

所以,不等式组的解集是95≤x≤105,

∵x是正整数,105﹣95+1=11,

∴共有11种方案;

(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),

①当50<a<60时,60﹣a>0,W随x的增大而增大,

所以,当x=105时,W有最大值,

即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;

②当a=60时,60﹣a=0,W=16000,

(2)中所有方案获利都一样;

③当60<a<70时,60﹣a<0,W随x的增大而减小,

所以,当x=95时,W有最大值,

即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.

点评:

本题考查了一次函数的应用,分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,(3)要根据一次项系数的情况分情况讨论.

4、(2013•泸州)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.

(1)符合题意的组建方案有几种?

请你帮学校设计出来;

(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明

(1)中哪种方案费用最低,最低费用是多少元?

解答:

解:

(1)设组建中型图书角x个,则组建小型图书角为(30﹣x)个.

由题意,得

化简得

解这个不等式组,得18≤x≤20.

由于x只能取整数,∴x的取值是18,19,20.

当x=18时,30﹣x=12;当x=19时,30﹣x=11;当x=20时,30﹣x=10.

故有三种组建方案:

方案一,中型图书角18个,小型图书角12个;

方案二,中型图书角19个,小型图书角11个;

方案三,中型图书角20个,小型图书角10个.

(2)方案一的费用是:

860×18+570×12=22320(元);

方案二的费用是:

860×19+570×11=22610(元);

方案三的费用是:

860×20+570×10=22900(元).

故方案一费用最低,最低费用是22320元.

点评:

此题主要考查了一元一次不等式组和一次函数在实际生活中的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系列出不等式组解决问题,同时也利用了一次函数.

5、(2013•昆明)某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.

(1)求打折前每本笔记本的售价是多少元?

(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?

考点:

分式方程的应用;一元一次不等式组的应用.

专题:

应用题.

分析:

(1)设打折前售价为x,则打折后售价为0.9x,表示出打折前购买的数量及打折后购买的数量,再由打折后购买的数量比打折前多10本,可得出方程,解出即可;

(2)设购买笔记本y件,则购买笔袋(90﹣y)件,根据购买总金额不低于360元,且不超过365元,可得出不等式组,解出即可.

解答:

解:

(1)设打折前售价为x,则打折后售价为0.9x,

由题意得,

+10=

解得:

x=4,

经检验得:

x=4是原方程的根,

答:

打折前每本笔记本的售价为4元.

(2)设购买笔记本y件,则购买笔袋(90﹣y)件,

由题意得,360≤4×0.9×y+6×0.9×(90﹣y)≤365,

解得:

67

≤y≤70,

∵x为正整数,

∴x可取68,69,70,

故有三种购买方案:

方案一:

购买笔记本68本,购买笔袋22个;

方案二:

购买笔记本69本,购买笔袋21个;

方案三:

购买笔记本70本,购买笔袋20个;

点评:

本题考查了分式方程的应用、一元一次不等式组的应用,解答此类应用类题目,一定要先仔细审题,有时需要读上几遍,找到解题需要的等量关系或不等关系.

6、(2013四川宜宾)2013年4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?

生产任务是多少顶帐篷?

考点:

二元一次方程组的应用.

专题:

应用题.

分析:

设规定时间为x天,生产任务是y顶帐篷,根据不提速在规定时间内只能完成任务的90%,即提速后刚好提前一天完成任务,可得出方程组,解出即可.

解答:

解:

设规定时间为x天,生产任务是y顶帐篷,

由题意得,

解得:

答:

规定时间是6天,生产任务是800顶帐篷.

点评:

本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,设出未知数,利用等量关系得出方程组,难度一般. 

点评:

本题考查了二元一次方程的应用,解题的关键在于车辆数是正整数.

7、(2013•攀枝花)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.

(1)求购进甲,乙两种钢笔每支各需多少元?

(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?

(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第

(2)问的各种进货方案中,哪一种方案获利最大?

最大利润是多少元?

考点:

一元一次不等式组的应用;二元一次方程组的应用.

分析:

(1)先设购进甲,乙两种钢笔每支各需a元和b元,根据购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元列出方程组,求出a,b的值即可;

(2)先设购进甲钢笔x支,乙钢笔y支,根据题意列出5x+10y=1000和不等式组6y≤x≤8y,把方程代入不等式组即可得出20≤y≤25,求出y的值即可;

(3)先设利润为W元,得出W=2x+3y=400﹣y,根据一次函数的性质求出最大值.

解答:

解:

(1)设购进甲,乙两种钢笔每支各需a元和b元,根据题意得:

解得:

答:

购进甲,乙两种钢笔每支各需5元和10元;

(2)设购进甲钢笔x支,乙钢笔y支,根据题意可得:

解得:

20≤y≤25,

∵x,y为整数,

∴y=20,21,22,23,24,25共六种方案,

∵5x=1000﹣10y>0,

∴0<y<100,

∴该文具店共有6种进货方案;

(3)设利润为W元,则W=2x+3y,

∵5x+10y=1000,

∴x=200﹣2y,

∴代入上式得:

W=400﹣y,

∵W随着y的增大而减小,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 育儿理论经验

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1