《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx
《《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx》由会员分享,可在线阅读,更多相关《《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx(10页珍藏版)》请在冰豆网上搜索。
《物理双语教学课件》Chapter4WorkandEnergy功和能
Chapter4WorkandEnergy
Theconceptofenergyisoneofthemostimportantintheworldofscience.Ineverydayusage,thetermenergyhastodowiththecostoffuelfortransportationandheating,electricityforlightsandappliances,andthefoodsweconsume.However,theseideasdonotreallydefineenergy.Theytellusonlythatfuelsareneededtodoajobandthatthosefuelsprovideuswithsomethingwecallenergy.
EnergyispresentintheUniverseinavarietyofforms,includingmechanicalenergy,chemicalenergy,electromagneticenergy,heatenergy,andnuclearenergy.Althoughenergycanbetransformedfromoneformtoanother,thetotalamountofenergyintheUniverseremainsthesame.Ifanisolatedsystemlosesenergyinsomeform,thenbytheprincipleofconservationofenergy,thesystemmustgainanequalamountofenergyinotherform.Thetransformationofenergyfromoneformintoanotherisanessentialpartofthestudyofphysics,chemistry,biology,geology,andastronomy.
Inthischapterweareconcernedonlywithmechanicalenergy.Weintroducetheconceptofkineticenergy,whichisdefinedastheenergyassociatedwithmotion,andtheconceptofpotentialenergy,theenergyassociatedwithposition.WeshallseethattheideasofworkandenergycanbeusedinplaceofNewton’slawtosolvecertainproblems.
4.1WorkandPower
1.WorkWdonebyaconstantforceisdefinedastheproductofthecomponentoftheforcealongthedirectionofdisplacementandthemagnitudeofthedisplacement.
Wheretheforcemakesanangleof
withdisplacement
TheSIunitofworkisthejoule(J),namedforJamesPrescottJoule,anEnglishscientistofthe1800s.Itisderiveddirectlyfromtheunitsformassandvelocity:
1joule=1J=1(kg)(m/s2)(m)=1kgm2/s2
2.Workdonebyavariableforce
(1).TheincrementofworkdWdoneontheparticlebyFduringthedisplacementdris
whereForceFisfunctionofitsposition.
(2).TheworkWdonebyFwhiletheparticlemovesfromaninitialpositionatoafinalpositionbisthen
(3).Weusethecomponentsof
and
toexpresstheforceanddisplacement,thenwehave
3.Workdonebymultipleforces:
Ifthereareseveralforcesactonaparticle,wecanreplaceFinaboveequationwiththenetforce
where
where
aretheindividualforces.Then
4.Power
(1).Therateatwhichworkisdonebyaforceissaidtobethepowerduetotheforce.IfanamountofworkWisdoneinatimeinterval
byaforce,thentheaveragepowerduetotheforceis
.
(2).TheinstantaneouspowerPistheinstantaneousrateofdoingwork,whichcanbewrittenas
.
(3).TheSIunitofpoweristhejoulepersecond.Thisunitisusedsooftenthatithasaspecialname,thewatt(W),afterJamesWatt,whogreatlyimprovedtherateatwhichsteamenginescoulddowork.
4.2KineticEnergyandWork-KineticEnergyTheorem
Energyisascalarquantitythatisassociatedwithastateofoneormoreobject.Thetermstateherehasitscommonmeaning:
itistheconditionofanobject.
1.KineticenergyKisassociatedwiththestateofmotionofanobject.Thefastertheobjectmoves,thegreaterisitskineticenergy.Foranobjectofmassmandwhosespeedviswellbelowthespeedoflight,wedefinekineticenergyas
TheSIunitofkineticenergyisthesameaswork—joule.
Aconvenientunitofenergyfordealingwithatomsorwithsubatomicparticlesistheelectron-volt(eV).
1electron-volt=1eV=1.60x10–19J.
2.Work-kineticenergytheorem:
Ifaforcechangesthespeedofanobject,italsochangesthekineticenergyoftheobject.Ifthekineticenergyistheonlytypeofenergyoftheobjectbeingchangedbytheforce,thenthechangeinkineticenergyisequaltotheworkWdonebytheforce:
Here
istheinitialkineticenergy(=
)and
isthekineticenergy(
)aftertheworkisdone.
3.Wecanprovework-kineticenergytheoremasfollow:
(Numeratoranddenominatorofafraction)
4.3Workdonebyweightandbyaspringforce
1.Workdonebyweight:
Wecanfindthattheworkdonebyweightonaparticlebetweentwopointsdoesnotdependonthepathtakenbytheparticle.Ornomatterwhatpathwechoosetomovetheparticle,theworkdonebyitsweightisthesame.Inotherwordifwemoveaparticlearoundaclosedpath,theworkdonebyweightontheparticleiszero.
2.Workdoneonaparticle-likeobjectbyaparticulartypeofvariableforce,namely,springforce—theforceexertedbyaspring.
3.ConservativeforceandNon-conservativeforce:
Iftheworkdonebytheforceisindependentofthepaththeparticlemoves,theforceisaconservativeforce;otherwiseanon-conservativeforce.Weightandspring-forceareconservativeforces;frictionisanon-conservativeforce.
4.4Potentialenergy
PotentialenergyUisenergythatcanbeassociatedwiththeconfiguration(orarrangement)ofasystemofobjectsthatexertaforceononeanother.Iftheconfigurationofthesystemchanges,thenthepotentialenergyofthesystemalsochanges.
1.Weknowthatworkdonebyaconservativeforcehasnothingtodowiththepaththeparticletaken.Sowecanintroduceaquantitywhichisthefunctionofthestateofthesystemtoindicatethiskindofnatureforaconservativeforce.Wecallitpotential.
2.GravitationalPotentialEnergy
(1).Theworkdonebyweightcanbeexpressedas:
where
isthechangeinthegravitationalpotentialenergy.Sincetheworkdonebyweighthasdefinitemagnitudefromaninitialpositiontoafinalposition,soonlyachange
ingravitationalpotentialenergyisphysicallyimportant.
(2).However,tosimplifyacalculationoradiscussion,wecansaythatacertaingravitationalpotentialUisassociatedwithanygivenconfigurationofthesystem,withtheparticleatagivenheighth.Todoso,werewritetheaboveequationas:
Thenwetake
tobethegravitationalpotentialenergyofthesystemwhenitisinareferenceconfiguration,withtheparticleatareferencepoint
.Usually,weset
and
thenwehave
.Sothegravitationalpotentialenergyassociatedwithaparticle-Earthsystemdependsontheheighthoftheparticlerelativetothereferencepositionofhi=0,notthehorizontalposition.
3.ElasticPotentialEnergy
(1).Similartoaparticle-Earthsystem,theworkdonebythespringforcecanberewrittenas
.
(2).ToassociatedapotentialenergyUwithanygivenconfigurationofthesystem,withtheblockatpositionx,wesetthereferencepointfortheblockasxi=0,whichisalwaysattheequilibriumpositionoftheblock.AndwesetthecorrespondingelasticpotentialenergyofthesystemasUi=0.Thuswehave
.
Attention:
(1).Potentialenergybelongstothewholesystem.
(2).Themagnitudeofpotentialenergydependson
thechoiceofthereferencepoint.
4.5Work-EnergyTheoremandConservationofMechanicalEnergy
1.Work-kineticenergytheoremforoneparticle:
Wehave
2.Work-EnergyTheorem:
SupposewehaveparticlesofNinthesystemwediscussedandweusework-kineticenergytheoremforeachparticle,thenwehavetotalamountofNequationslikethose:
Wecandividetheforcesexertedoneveryparticleintoexternalforcesandinternalforces.Andtheinternalforcescanalsobeclassifiedasconservativeinternalforcesandnon-conservativeforces.Summingthetwosideofaboveequations,wewillhave:
Ortobeexactly,
Wealsoknowthattheworkdonebytheconservativeinternalforcecanbewrittenastheminusdifferenceofpotentialenergy.SowegettheWork-EnergyTheorem:
Theworkdonebyexternalforcesandnon-conservativeinternalforcesinagivensystemisexactlyequaltothedifferenceofitsMechanicalEnergy.
3.ConservationofMechanicalEnergy:
Whenonlyconservativeforcesactwithinasystem,thekineticenergyandpotentialenergycanchange.However,theirsum,themechanicalenergyEofthesystem,doesnotchange.
4.6ReadingaPotentialenergycurve
Consideraparticlethatispartofasysteminwhichaconservativeforceacts.Supposethattheparticleisconstrainedtomovealonganxaxiswhiletheconservativeforcedoesworkonit.
1.FindingtheForceAnalytically:
Forone-dimensionalmotion,theworkWdonebyaconservativeforcethatactsonaparticleastheparticlemoves,andthepotentialenergyhavetherelationasfollow
Socangettheforcefromthepotentialenergy
Wecan,forexample,checkthisresultbyputting
whichistheelasticpotentialenergyfunctionforaspringforce.Aboveequationyields
asexpected.
2.ThePotentialEnergyCurve:
ThefollowingfigureisaplotofapotentialenergyfunctionU(x)forasysteminwhichaparticleisinone-dimensionalmotionwhileaconservativeforceF(x)doesworkonit.WecaneasilyfindF(x)bytakingtheslopeoftheU(x)curveatvariouspoints.Fig.(b)isaplotofF(x)foundinthisway.
3.TuningPoint:
Sincethereisonlyconservativeforceactingontheparticle,thesystemwillremainconservationofitsmechanicalenergy.Sowehave
.Sincekineticenergy
isnotlessthanzero.Astheparticlemovesfrom
to
(Fig.a),whentheparticlereaches
itskineticenergyiszero,meanwhiletheforceontheparticleispositive.Itmeanstheparticledoesnotremainat
butinsteadbeginstomovebacktotheright.Hence
isatuningpoint,aplacewhereK=0andtheparticlechangesdirectionofitsmotion.
4.EquilibriumPoints:
Neutralequilibrium
Unstableequilibrium
Stableequilibrium