《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx

上传人:b****3 文档编号:12641435 上传时间:2023-04-21 格式:DOCX 页数:10 大小:345.82KB
下载 相关 举报
《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx_第1页
第1页 / 共10页
《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx_第2页
第2页 / 共10页
《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx_第3页
第3页 / 共10页
《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx_第4页
第4页 / 共10页
《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx

《《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx》由会员分享,可在线阅读,更多相关《《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx(10页珍藏版)》请在冰豆网上搜索。

《物理双语教学课件》Chapter 4 Work and Energy 功和能.docx

《物理双语教学课件》Chapter4WorkandEnergy功和能

Chapter4WorkandEnergy

Theconceptofenergyisoneofthemostimportantintheworldofscience.Ineverydayusage,thetermenergyhastodowiththecostoffuelfortransportationandheating,electricityforlightsandappliances,andthefoodsweconsume.However,theseideasdonotreallydefineenergy.Theytellusonlythatfuelsareneededtodoajobandthatthosefuelsprovideuswithsomethingwecallenergy.

EnergyispresentintheUniverseinavarietyofforms,includingmechanicalenergy,chemicalenergy,electromagneticenergy,heatenergy,andnuclearenergy.Althoughenergycanbetransformedfromoneformtoanother,thetotalamountofenergyintheUniverseremainsthesame.Ifanisolatedsystemlosesenergyinsomeform,thenbytheprincipleofconservationofenergy,thesystemmustgainanequalamountofenergyinotherform.Thetransformationofenergyfromoneformintoanotherisanessentialpartofthestudyofphysics,chemistry,biology,geology,andastronomy.

Inthischapterweareconcernedonlywithmechanicalenergy.Weintroducetheconceptofkineticenergy,whichisdefinedastheenergyassociatedwithmotion,andtheconceptofpotentialenergy,theenergyassociatedwithposition.WeshallseethattheideasofworkandenergycanbeusedinplaceofNewton’slawtosolvecertainproblems.

4.1WorkandPower

1.WorkWdonebyaconstantforceisdefinedastheproductofthecomponentoftheforcealongthedirectionofdisplacementandthemagnitudeofthedisplacement.

Wheretheforcemakesanangleof

withdisplacement

TheSIunitofworkisthejoule(J),namedforJamesPrescottJoule,anEnglishscientistofthe1800s.Itisderiveddirectlyfromtheunitsformassandvelocity:

1joule=1J=1(kg)(m/s2)(m)=1kgm2/s2

2.Workdonebyavariableforce

(1).TheincrementofworkdWdoneontheparticlebyFduringthedisplacementdris

whereForceFisfunctionofitsposition.

(2).TheworkWdonebyFwhiletheparticlemovesfromaninitialpositionatoafinalpositionbisthen

(3).Weusethecomponentsof

and

toexpresstheforceanddisplacement,thenwehave

3.Workdonebymultipleforces:

Ifthereareseveralforcesactonaparticle,wecanreplaceFinaboveequationwiththenetforce

where

where

aretheindividualforces.Then

4.Power

(1).Therateatwhichworkisdonebyaforceissaidtobethepowerduetotheforce.IfanamountofworkWisdoneinatimeinterval

byaforce,thentheaveragepowerduetotheforceis

.

(2).TheinstantaneouspowerPistheinstantaneousrateofdoingwork,whichcanbewrittenas

.

(3).TheSIunitofpoweristhejoulepersecond.Thisunitisusedsooftenthatithasaspecialname,thewatt(W),afterJamesWatt,whogreatlyimprovedtherateatwhichsteamenginescoulddowork.

4.2KineticEnergyandWork-KineticEnergyTheorem

Energyisascalarquantitythatisassociatedwithastateofoneormoreobject.Thetermstateherehasitscommonmeaning:

itistheconditionofanobject.

1.KineticenergyKisassociatedwiththestateofmotionofanobject.Thefastertheobjectmoves,thegreaterisitskineticenergy.Foranobjectofmassmandwhosespeedviswellbelowthespeedoflight,wedefinekineticenergyas

TheSIunitofkineticenergyisthesameaswork—joule.

Aconvenientunitofenergyfordealingwithatomsorwithsubatomicparticlesistheelectron-volt(eV).

1electron-volt=1eV=1.60x10–19J.

2.Work-kineticenergytheorem:

Ifaforcechangesthespeedofanobject,italsochangesthekineticenergyoftheobject.Ifthekineticenergyistheonlytypeofenergyoftheobjectbeingchangedbytheforce,thenthechangeinkineticenergyisequaltotheworkWdonebytheforce:

Here

istheinitialkineticenergy(=

)and

isthekineticenergy(

)aftertheworkisdone.

3.Wecanprovework-kineticenergytheoremasfollow:

(Numeratoranddenominatorofafraction)

4.3Workdonebyweightandbyaspringforce

1.Workdonebyweight:

Wecanfindthattheworkdonebyweightonaparticlebetweentwopointsdoesnotdependonthepathtakenbytheparticle.Ornomatterwhatpathwechoosetomovetheparticle,theworkdonebyitsweightisthesame.Inotherwordifwemoveaparticlearoundaclosedpath,theworkdonebyweightontheparticleiszero.

2.Workdoneonaparticle-likeobjectbyaparticulartypeofvariableforce,namely,springforce—theforceexertedbyaspring.

3.ConservativeforceandNon-conservativeforce:

Iftheworkdonebytheforceisindependentofthepaththeparticlemoves,theforceisaconservativeforce;otherwiseanon-conservativeforce.Weightandspring-forceareconservativeforces;frictionisanon-conservativeforce.

4.4Potentialenergy

PotentialenergyUisenergythatcanbeassociatedwiththeconfiguration(orarrangement)ofasystemofobjectsthatexertaforceononeanother.Iftheconfigurationofthesystemchanges,thenthepotentialenergyofthesystemalsochanges.

1.Weknowthatworkdonebyaconservativeforcehasnothingtodowiththepaththeparticletaken.Sowecanintroduceaquantitywhichisthefunctionofthestateofthesystemtoindicatethiskindofnatureforaconservativeforce.Wecallitpotential.

2.GravitationalPotentialEnergy

(1).Theworkdonebyweightcanbeexpressedas:

where

isthechangeinthegravitationalpotentialenergy.Sincetheworkdonebyweighthasdefinitemagnitudefromaninitialpositiontoafinalposition,soonlyachange

ingravitationalpotentialenergyisphysicallyimportant.

(2).However,tosimplifyacalculationoradiscussion,wecansaythatacertaingravitationalpotentialUisassociatedwithanygivenconfigurationofthesystem,withtheparticleatagivenheighth.Todoso,werewritetheaboveequationas:

Thenwetake

tobethegravitationalpotentialenergyofthesystemwhenitisinareferenceconfiguration,withtheparticleatareferencepoint

.Usually,weset

and

thenwehave

.Sothegravitationalpotentialenergyassociatedwithaparticle-Earthsystemdependsontheheighthoftheparticlerelativetothereferencepositionofhi=0,notthehorizontalposition.

3.ElasticPotentialEnergy

(1).Similartoaparticle-Earthsystem,theworkdonebythespringforcecanberewrittenas

.

(2).ToassociatedapotentialenergyUwithanygivenconfigurationofthesystem,withtheblockatpositionx,wesetthereferencepointfortheblockasxi=0,whichisalwaysattheequilibriumpositionoftheblock.AndwesetthecorrespondingelasticpotentialenergyofthesystemasUi=0.Thuswehave

.

Attention:

(1).Potentialenergybelongstothewholesystem.

(2).Themagnitudeofpotentialenergydependson

thechoiceofthereferencepoint.

4.5Work-EnergyTheoremandConservationofMechanicalEnergy

1.Work-kineticenergytheoremforoneparticle:

Wehave

2.Work-EnergyTheorem:

SupposewehaveparticlesofNinthesystemwediscussedandweusework-kineticenergytheoremforeachparticle,thenwehavetotalamountofNequationslikethose:

Wecandividetheforcesexertedoneveryparticleintoexternalforcesandinternalforces.Andtheinternalforcescanalsobeclassifiedasconservativeinternalforcesandnon-conservativeforces.Summingthetwosideofaboveequations,wewillhave:

Ortobeexactly,

Wealsoknowthattheworkdonebytheconservativeinternalforcecanbewrittenastheminusdifferenceofpotentialenergy.SowegettheWork-EnergyTheorem:

Theworkdonebyexternalforcesandnon-conservativeinternalforcesinagivensystemisexactlyequaltothedifferenceofitsMechanicalEnergy.

3.ConservationofMechanicalEnergy:

Whenonlyconservativeforcesactwithinasystem,thekineticenergyandpotentialenergycanchange.However,theirsum,themechanicalenergyEofthesystem,doesnotchange.

4.6ReadingaPotentialenergycurve

Consideraparticlethatispartofasysteminwhichaconservativeforceacts.Supposethattheparticleisconstrainedtomovealonganxaxiswhiletheconservativeforcedoesworkonit.

1.FindingtheForceAnalytically:

Forone-dimensionalmotion,theworkWdonebyaconservativeforcethatactsonaparticleastheparticlemoves,andthepotentialenergyhavetherelationasfollow

Socangettheforcefromthepotentialenergy

Wecan,forexample,checkthisresultbyputting

whichistheelasticpotentialenergyfunctionforaspringforce.Aboveequationyields

asexpected.

2.ThePotentialEnergyCurve:

ThefollowingfigureisaplotofapotentialenergyfunctionU(x)forasysteminwhichaparticleisinone-dimensionalmotionwhileaconservativeforceF(x)doesworkonit.WecaneasilyfindF(x)bytakingtheslopeoftheU(x)curveatvariouspoints.Fig.(b)isaplotofF(x)foundinthisway.

3.TuningPoint:

Sincethereisonlyconservativeforceactingontheparticle,thesystemwillremainconservationofitsmechanicalenergy.Sowehave

.Sincekineticenergy

isnotlessthanzero.Astheparticlemovesfrom

to

(Fig.a),whentheparticlereaches

itskineticenergyiszero,meanwhiletheforceontheparticleispositive.Itmeanstheparticledoesnotremainat

butinsteadbeginstomovebacktotheright.Hence

isatuningpoint,aplacewhereK=0andtheparticlechangesdirectionofitsmotion.

4.EquilibriumPoints:

Neutralequilibrium

Unstableequilibrium

Stableequilibrium

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1