《P和PI控制参数设计》课程设计.doc

上传人:b****2 文档编号:1257582 上传时间:2022-10-19 格式:DOC 页数:31 大小:605.40KB
下载 相关 举报
《P和PI控制参数设计》课程设计.doc_第1页
第1页 / 共31页
《P和PI控制参数设计》课程设计.doc_第2页
第2页 / 共31页
《P和PI控制参数设计》课程设计.doc_第3页
第3页 / 共31页
《P和PI控制参数设计》课程设计.doc_第4页
第4页 / 共31页
《P和PI控制参数设计》课程设计.doc_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

《P和PI控制参数设计》课程设计.doc

《《P和PI控制参数设计》课程设计.doc》由会员分享,可在线阅读,更多相关《《P和PI控制参数设计》课程设计.doc(31页珍藏版)》请在冰豆网上搜索。

《P和PI控制参数设计》课程设计.doc

武汉理工大学《自动控制原理》课程设计说明书

目录

摘要 1

1P和PI控制原理 2

1.1比例(P)控制 2

1.2比例-微分控制 3

2P和PI控制参数设计 4

2.1原系统分析 4

2.1.1初始条件 4

2.1.2原系统稳定性分析 4

2.2P控制参数设计 5

2.2.1加入P控制器后系统稳定性分析 5

2.2.2加入P控制器后系统动态性能指标计算 7

2.3PI控制参数设计 14

2.3.1加入PI控制器后系统稳定性分析 14

2.3.2加入PI控制器后系统动态性能指标计算 16

3P和PI控制特点的比较 23

3.1比例(P)控制器:

23

3.2比例-积分(PI)控制器:

24

4心得体会 24

5参考文献 26

附录一 27

附录二 29

摘要

在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。

对于比例(P)控制,在串联校正中,加大比例系数可以提高系统的开环增益,减小系统的稳态误差,从而提高系统的控制精度,但也会降低系统的相对稳定性。

比例积分(PI)控制器相当于在系统中加入了一个位于原点的开环极点,从而提高了系统型别,改善了其稳态性能。

同时也增加了一个位于S平面左半平面的开环零点,减小了阻尼程度,缓和了系统极点对于系统稳定性及动态过程产生不利影响。

根据系统的需要和调节要求,可以选择多种方式的校正系统,各种系统的性能会有所差异,选取最优的组合最大化满足校正要求,从而使之达到最好的校正效果。

关键词:

自动控制系统,比例(P)控制,比例积分(PI)控制

1P和PI控制原理

1.1比例(P)控制

比例控制是一种最简单的控制方式。

单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。

实际应用中,比例度的大小应视具体情况而定,比例度太大,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太小,控制作用太强,容易导致系统的稳定性变差,引发振荡。

对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。

比例(P)控制主要组成部分是比例环节,其中比例环节的方块图如图1所示:

图1比例环节方块图

其传递函数为:

单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。

工业生产中比例控制规律使用较为普遍。

比例环节主要由运算放大器、纯电阻、滑动变阻器等组成,其控制器实质上是一个具有可调增益的放大器。

在信号变换过程中,P控制器值改变信号的增益而不影响其相位。

在串联校正中,加大了控制器增益,可以提高系统的开环增益,减小的系统稳态误差,从而提高系统的控制精度。

1.2比例-微分控制

比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。

只要有偏差产生,控制器立即产生控制作用。

但是,不能最终消除余差的缺点限制了它的单独使用。

克服余差的办法是在比例控制的基础上加上积分控制作用。

比例—积分(PI)控制主要组成部分是比例—积分环节,其中比例—积分环节的方块图如图2所示

图2比例积分环节方块图

其传递函数为:

积分控制器的输出与输入偏差对时间的积分成正比。

这里的“积分”指的是“积累”的意思。

积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。

只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。

所以,积分控制可以消除余差。

积分控制规律又称无差控制规律。

在串联校正时,PI控制器相当于在系统中增加了一个位于原点的开环极点,同时也增加了一个位于s左半平面的开环零点。

位于原点的极点可以提高系统的型别,以消除或减小系统的稳态误差,改善系统的稳态性能;而增加的负实零点则用来减小系统的阻尼程度,缓和PI控制器极点对系统稳定性及动态性能产生的不利影响。

只要积分时间常数足够大,PI控制器对系统稳定性的不利影响可大为减弱,在控制工程中,PI控制器主要用来改善控制系统的稳态性能。

2P和PI控制参数设计

2.1原系统分析

2.1.1初始条件

反馈系统方框图如图3所示。

(比例P控制律),(比例积分PI控制律),,

R

Y

e

+

-

图3

2.1.2原系统稳定性分析

由题目给出的初始条件知,当,未加入D(s)校正环节时,系统开环传递函数为:

由系统结构图可知系统为单位负反馈系统所以闭环传递函数为:

则系统的闭环特征方程为:

按劳斯判据可列出劳斯表如表1:

表1初始系统的劳斯表

1

-5

5

1

1

0

由于劳斯表第一列符号不相同,一行的系数为负,故所以系统不稳定,需要校正。

2.2P控制参数设计

2.2.1加入P控制器后系统稳定性分析

当,时,系统结构图如图4所示。

图4加入P控制器的系统法结构图

系统的开环传递函数为:

则其闭环传递函数为:

系统的闭环特征方程为:

按劳斯判据可列出劳斯表如表2:

表2加入P控制器后系统的劳斯表

1

K-6

5

K

K

0

要使系统稳定则必须满足劳斯表第一列全为正,即:

解得,系统稳定时,K的取值范围为。

当输入信号为单位阶跃信号时,

系统的误差系数为:

系统的稳态误差为:

2.2.2加入P控制器后系统动态性能指标计算

由上述可知,系统稳定的条件为k>7.5。

分别对k分别取7.5、10、30来讨论分析系统的动态性能指标。

2.2.2.1不同K值下的系统闭环特征根

1)K=7.5时

系统的闭环传递函数为:

通过MATLAB的roots命令求取系统闭环特征根,其程序如下:

den=[1,5,1.5,7.5];%描述当K=7.5时的系统传递函数中分母的多项式系数

roots(den);%求系统特征根

其运行结果如下:

ans=

-5.0000

0.0000+1.2247i

0.0000-1.2247i

系统闭环的特征根为:

从是一对共轭纯虚根,系统处于临界稳定状态。

2)K=10时

系统的闭环传递函数为:

通过MATLAB的roots命令求取系统闭环特征根,其程序如下:

den=[1,5,4,10];%描述当K=10时的系统传递函数中分母的多项式系数

roots(den);%求系统特征根

其运行结果如下:

ans=

-4.6030

-0.1985+1.4605i

-0.1985-1.4605i

当K=10时,。

3)K=30时

系统的闭环传递函数为:

通过MATLAB的roots命令求取系统闭环特征根,其程序如下:

den=[1,5,14,30];%描述当K=30时的系统传递函数中分母的多项式系数

roots(den);%求系统特征根

其运行结果如下:

ans=

-1.6194

-1.6903+3.9583i

-1.6903-3.9583i

当K=30时,。

2.2.2.2不同K值下的单位阶跃响应曲线

1)K=7.5时

系统的闭环传递函数为:

用MATLAB求系统的单位阶跃响应,绘制出K=7.5时的单位阶跃响应曲线图,其程序如下:

num1=[7.5,7.5];%描述当K=7.5时的系统传递函数中分子的多项式系数

den1=[1,5,1.5,7.5];%描述当K=7.5时的系统传递函数中分母的多项式系数

t1=0:

0.1:

15;%选定仿真时间向量,并设计步长

y1=step(num1,den1,t1);%求当K=7.5时系统单位阶跃响应

2)K=10时

系统的闭环传递函数为:

用MATLAB求系统的单位阶跃响应,绘制出K=10时的单位阶跃响应曲线图,其程序如下:

num2=[10,10];%描述当K=10时的系统传递函数中分子的多项式系数

den2=[1,5,4,10];%描述当K=10时的系统传递函数中分母的多项式系数

y2=step(num2,den2,t1);%求当K=10时系统单位阶跃响应

3)K=30时

系统的闭环传递函数为:

用MATLAB求系统的单位阶跃响应,绘制出K=30时的单位阶跃响应曲线图,其程序如下:

num3=[30,30];%描述当K=30时的系统传递函数中分子的多项式系数

den3=[1,5,24,30];%描述当K=30时的系统传递函数中分母的多项式系数

y3=step(num3,den3,t1);%求当K=30时系统单位阶跃响应

4)单位阶跃响应曲线

plot(t1,y1,':

r',t1,y2,'g.',t1,y3,'b'),xlabel('t'),ylabel('c(t)'),title('不同K值时单位阶跃响应'),grid;%以x为横坐标,分别以y为纵坐标,画出y1、y2、y3多重折线,如图5所示:

图5单位阶跃响应曲线

2.2.2.3不同k值下的系统动态性能指标

1)K=7.5时

利用ltiview命令观察和读出系统单位阶跃响应时的暂态性能指标,程序如下:

MATLAB程序如下:

num=[7.5,7.5];%描述当K=7.5时的系统传递函数中分子的多项式系数

den=[1,5,1.5,7.5];%描述当K=7.5时的系统传递函数中分母的多项式系数

step(num1,den1);%求当K=7.5时系统单位阶跃响应

sys3=tf(num1,den1);%生成当K=7.5时的传递函数

ltiview(sys1);%对sys1进行仿真

gridon;

图6K=7.5时的单位阶跃响应

从图6可以看出,当K=7.5时,系统的单位阶跃响应为等幅振荡,处于无阻尼状态。

2)K=10时

利用ltiview命令观察和读出系统单位阶跃响应时的暂态性能指标,程序如下:

MATLAB程序如下:

num2=[10,10];%描述当K=10时的系统传递函数中分子的多项式系数

den2=[1,5,4,10];%描述当K=10时的系统传递函数中分母的多项式系数

step(num2,den2);%求当K=10时系统单位阶跃响应

sys2=tf(num2,den2);%生成当K=10时的传递函数

ltiview(sys2);%对sys2进行仿真

gridon;

图7K=10时的单位阶跃响应

当光

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 材料科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1