一元一次方程应用题类型汇编.docx

上传人:b****4 文档编号:12106805 上传时间:2023-04-17 格式:DOCX 页数:23 大小:30.75KB
下载 相关 举报
一元一次方程应用题类型汇编.docx_第1页
第1页 / 共23页
一元一次方程应用题类型汇编.docx_第2页
第2页 / 共23页
一元一次方程应用题类型汇编.docx_第3页
第3页 / 共23页
一元一次方程应用题类型汇编.docx_第4页
第4页 / 共23页
一元一次方程应用题类型汇编.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

一元一次方程应用题类型汇编.docx

《一元一次方程应用题类型汇编.docx》由会员分享,可在线阅读,更多相关《一元一次方程应用题类型汇编.docx(23页珍藏版)》请在冰豆网上搜索。

一元一次方程应用题类型汇编.docx

一元一次方程应用题类型汇编

一般行程问题(相遇与追击问题) 

1.行程问题中的三个基本量及其关系:

 

路程=速度×时间   时间=路程÷速度   速度=路程÷时间 2.行程问题基本类型 

(1)相遇问题:

  快行距+慢行距=原距 

(2)追及问题:

  快行距-慢行距=原距

环行跑道与时钟问题:

 

1、在6点和7点之间,什么时刻时钟的分针和时针重合?

      

2、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地

同向出发,几分钟后二人相遇?

若背向跑,几分钟后相遇?

3、在3时和4时之间的哪个时刻,时钟的时针与分针:

⑴重合;⑵ 成平角;⑶成直角;

行船与飞机飞行问题:

 

航行问题:

顺水(风)速度=静水(风)速度+水流(风)速度           逆水(风)速度=静水(风)速度-水流(风)速度 

水流速度=(顺水速度-逆水速度)÷2 

1、 一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3

小时,求两码头之间的距离。

    

2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行

需要3小时,求两城市间的距离。

工程问题 

1.工程问题中的三个量及其关系为:

 工作总量=工作效率×工作时间     

=

工作总量工作效率工作时间    =

工作总量

工作时间工作效率 

2.经常在题目中未给出工作总量时,设工作总量为单位1。

即完成某项任务的各工作量的和=总工作量=1.

市场经济问题 

1、某高校共有5个大餐厅和2个小餐厅.经过测试:

同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐. 

(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐; 

(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?

请说明理由.  

2、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?

调配与配套问题 

1、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.

七、方案设计问题 

1、某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:

 如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:

 

方案一:

将蔬菜全部进行粗加工. 

方案二:

尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售. 方案三:

将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成. 你认为哪种方案获利最多?

为什么?

数字问题 

行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,销售问题增长率问题数字问题,方案设计与成本分析,积分问题5古典数学,浓度问题等。

一元一次方程应用题分类汇集

一、一元一次方程应用题归类汇集:

行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,销售问题增长率问题数字问题,方案设计与成本分析,积分问题5古典数学,浓度问题等。

二、列方程解应用题的一般步骤(解题思路)

(1)审—审题:

认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).

(2)设—设出未知数:

根据提问,巧设未知数.

(3)列—列出方程:

设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.

(4)解——解方程:

解所列的方程,求出未知数的值.

(5)答—检验,写答案:

检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)

三、具体分类

(一)行程问题——画图分析法(线段图)

解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。

并且还常常借助画草图来分析,理解行程问题。

1.行程问题中的三个基本量及其关系:

路程=速度×时间时间=路程÷速度速度=路程÷时间

2.行程问题基本类型

(1)相遇问题:

快行距+慢行距=原距

(2)追及问题:

快行距-慢行距=原距

(3)航行问题:

顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

水流速度=(顺水速度-逆水速度)÷2

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:

顺水路程=逆水路程.

常见的还有:

相背而行;行船问题;环形跑道问题;隧道问题;时钟问题等。

常用的等量关系:

1、甲、乙二人相向相遇问题

⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量

2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题

⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量

常用数据:

①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒

例1:

甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

 

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?

 

(2)两车同时开出,相背而行多少小时后两车相距600公里?

 (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?

 (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?

 (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?

(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

2、人从家里骑自行车到学校。

若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?

3、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。

解:

方法一:

设由A地到B地规定的时间是x小时,则

方法二:

设由A、B两地的距离是x千米,则(设路程,列时间等式)

温馨提醒:

当速度已知,设时间,列路程等式;设路程,列时间等式是我们的解题策略。

3、甲、乙两人同时同地同向而行,甲的速度是4千米/小时,乙的速度比甲慢,半小时后,甲调头往回走,再走10分钟与乙相遇,求乙的速度。

4、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时已过了3小时。

求两人的速度。

5、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。

出发地到目的地的距离是60千米。

问:

步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)

提醒:

此类题相当于环形跑道问题,两者行的总路程为一圈

即步行者行的总路程+汽车行的总路程=60×2

6、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?

(提示:

此题为典型的追击问题)

7、甲骑自行车从A地到B地,乙骑自行车从B到A地,两人都匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A、B两地间的路程。

8、甲乙两人在400米的环形跑道上跑步,从同一起点同时出发,甲的速度是5米/秒,乙的速度是3米/秒。

(1)如果背向而行,两人多久第一次相遇?

(2)如果同向而行,两人多久第一次相遇?

9、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

⑴行人的速度为每秒多少米?

⑵这列火车的车长是多少米?

老师提醒:

将火车车尾视为一个快者,则此题为以车长为提前量的追击问题。

等量关系:

①两种情形下火车的速度相等②两种情形下火车的车长相等

在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。

10.一列客车长200m,一列货车长280m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?

11、一列火车长150米,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,到这列火车完全通过隧道所需时间是【】

老师提醒:

将车尾看作一个行者,当车尾通过600米的隧道再加上150米的车长时

所用的时间,就是所求的完全通过的时间,哈哈!

你明白吗?

12、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。

隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?

火车的长度是多少?

若不能,请说明理由。

老师解析:

只要将车尾看作一个行人去分析即可,

前者为此人通过300米的隧道再加上一个车长,后者仅为此人通过一个车长。

此题中告诉时间,只需设车长列速度关系,或者是设车速列车长关系等式。

13、甲、乙两人相距5千米,分别以2千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙,遇到乙后立即掉头奔向甲,遇到甲后又奔向乙……直到甲、乙相遇,求小狗所走的路程。

注:

此为二题合一的题目,即独立的二人相遇问题和狗儿的独自奔跑。

只是他们的开始与结束时间是一样的,

14、在8点和9点间,何时时钟分针和时针重合?

何时时钟分针和时针成直角?

何时时钟分针和时针成平角?

15、在6点和7点之间,什么时刻时钟的分针和时针重合?

老师解析:

6:

00时分针指向12,时针指向6,此时二针相差180°,

在6:

00~7:

00之间,经过x分钟当二针重合时,时针走了0.5x°分针走了6x°

以下按追击问题可列出方程,不难求解。

16、在3时和4时之间的哪个时刻,时钟的时针与分针:

⑴重合;⑵成平角;⑶成直角;

行船问题

流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

流水问题有如下两个基本公式:

顺水速度=船速+水速(V顺=V静+V水)逆水速度=船速-水速(V顺=V静-V水)

例:

17一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?

18、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。

19、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。

(二)工程问题:

(1)、工程问题中的三个量及其关系为:

工作总量=工作效率×工作时间

工作总量=人均工作效率×工作时间×人数

(2).经常在题目中未给出工作总量时,设工作总量为单位1。

即完成某项任务的各工作量的和=总工作量=1.

工程问题常用等量关系:

先做的+后做的=完成量.

例1、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。

如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?

3、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的,问甲、乙两队单独做,各需多少天?

4.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池注满,出水管工作24小时可以将满池的水放完;如果同时打开进水管和出水管,求几小时后可以把空池注满?

5、一水池有一个进水管,4小时可以注满空池,池底有一个出水管,6小时可以放完满池的水.如果两水管同时打开,那么经过几小时可把空水池灌满?

6、一个水池安有甲乙丙三个水管,甲单独开12h注满水池,乙单独开8h注满,丙单独开24h可排掉满池的水,如果三管同开,多少小时后刚好把水池注满水?

7.整理一批图书,由一个人做要40小时完成。

现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。

假设这些人的工作效率相同,具体先安排多少人工作。

8、一项工程300人共做,需要40天,如果要求提前10天完成,问需要增多少人?

9.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?

原计划几天完成?

(三)和差倍分问题

(1)倍数关系:

通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:

通过关键词语“多、少、和、差、不足、剩余……”来体现。

例1:

某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?

原计划几天完成?

例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?

(四)比例问题

比例分配问题的一般思路为:

设其中一份为x,利用已知的比,写出相应的代数式。

常用等量关系:

各部分之和=总量。

1、学校有电视和幻灯机共90台,已知电视机和幻灯机的台数比为2:

3,求学校有电视机和幻灯机各多少台?

2.如果两个课外兴趣小组共有人数54人,两个小数的人数之比是4:

5;如果设人数少的一组有4x人,那么人数多的一组有________人,可列方程为:

______________________

3.甲乙两人身上的钱数之比为7:

6,两人去商店买东西后,甲花去50元,乙花去60时,此时他们身上的钱数之比为3:

2,则他们身上余下的钱数分别是多少?

4、某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:

3:

5,则三种型号的洗衣机各生产多少台?

5、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:

4,乙和丙的比是2:

3。

若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?

(五)劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变;

(3)只有调出没有调入,调出部分变化,其余不变。

例1.某厂一车间有64人,二车间有56人。

现因工作需要,要求第一车间人数是第二车间人数的一半。

问需从第一车间调多少人到第二车间?

例2.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

3、甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下的人数是原乙队人数的一半还多15人,求甲、乙两队原有人数各多少人?

(六)分配问题:

例1、.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。

求房间的个数和学生的人数。

2.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?

3、有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果有40㎡墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面。

每名师傅比徒弟一天多刷30㎡的墙面。

求每个房间需要粉刷的墙面面积是多少平方米?

(七)配套问题:

这类问题的关键是找对配套的两类物体的数量关系(比值)。

1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)

2.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

3.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。

该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

4.某队有45人参加挖土和运土劳动每人每天挖土4方或运土6方应该怎样分配挖土和运土的人数才能书每天挖出的土?

5.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?

6.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。

7.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?

(八)年龄问题:

例1:

甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是几岁?

2、小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄。

3、三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和为41,求乙同学的年龄.

4、今年哥俩的岁数加起来是55岁。

曾经有一年,哥哥的岁数与今年弟弟的岁数相同,那时哥哥的岁数恰好是弟弟岁数的两倍.哥哥今年几岁?

5.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

(九)数字问题:

(1)要搞清楚数的表示方法:

一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:

100a+10b+c。

(2)数字问题中一些表示:

两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。

例1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

2.一个两位数,十位上的数字与个位上的数字之和为8,把这个两位数减去36后,结果恰好成为十位数字与个位数字对调后组成的两位数,求原来的两位数?

3.一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原数大63,求原来的两位数。

4.三位数的数字之和是17,百位上的数字与十位上的数字的和比个位上的数大3,如把百位上的数字与个位上的数字对调,所得的新数比原数大495,求原数.

5.有一个两位数,它的十位上的数字比个位上的数字小3,十位上的数字与个位上的数字之和等于这个两位数的,求这个两位数。

6.将连续的奇数1,3,5,7,9…,排成如下的数表:

(1)十字框中的五个数的平均数与15有什么关系?

(2)若将十字框上下左右平移,可框住另外的五个数,这五个

数的和能等于315吗?

若能,请求出这五个数;若不能,请说明理由.

(十)比赛积分问题:

1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:

每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了几道题?

2、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。

某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?

3、小明在一次篮球比赛中,共投中15个球(其中包括2分球和3分球),共得34分,则小明共投中2分球和3分球各多少个?

(十一)销售问题

(1)销售问题中常出现的量有:

进价(或成本)、售价、标价(或定价)、利润等。

(2)利润问题常用等量关系:

商品利润=商品售价-商品进价=商品标价×折扣率-商品进价

商品利润率=×100%=×100%

(3)商品销售额=商品销售价×商品销售量

商品的销售利润=(销售价-成本价)×销售量

(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.即商品售价=商品标价×折扣率.

例.1、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

2、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?

3、某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?

4.某件商品进价为800元,出售时标价为1200元,现准备打折出售该商品,但要保证利润率不低于5%,则最多可打几折?

5、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?

6、一商场把彩电按标价的九折出售,仍可获利20%,如果该彩电的进货价是2400元,那么彩电的标价是多少元?

7.商店里有种型号的电视机,每台售价1200元,可盈利20%,现有一客商以11500元的总价购买了若干台这咱型号的电视机,这样商店仍有15%的利润,问客商买了几台电视机?

8、现对某商品降价10%促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?

(十二)储蓄问题

储蓄问题中的量及其关系为:

利息=本金×利率×期数本息和=本金+利息×100%利息税=利息×税率(20%)

例1.某同学把250元钱存入银行,整存整取,存期为半年。

半年后共得本息和252.7元,求银行半年期的年利率是多少?

(不计利息税)

2.莉莉的叔叔将打工挣来的25000元钱存入银行,整存整取三年,年利率为3.24%,三年后本金和利息共有元(不计利息税)

3.国家规定:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1