建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx

上传人:b****5 文档编号:12028481 上传时间:2023-04-16 格式:DOCX 页数:42 大小:95.44KB
下载 相关 举报
建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx_第1页
第1页 / 共42页
建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx_第2页
第2页 / 共42页
建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx_第3页
第3页 / 共42页
建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx_第4页
第4页 / 共42页
建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx_第5页
第5页 / 共42页
点击查看更多>>
下载资源
资源描述

建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx

《建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx》由会员分享,可在线阅读,更多相关《建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx(42页珍藏版)》请在冰豆网上搜索。

建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx

建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统

翻译

Sealedbuildingdrainageandventsystems

—anapplicationofactiveairpressuretransientcontrolandsuppression

Abstract

Theintroductionofsealedbuildingdrainageandventsystemsisconsideredaviablepropositionforcomplexbuildingsduetotheuseofactivepressuretransientcontrolandsuppressionintheformofairadmittancevalvesandpositiveairpressureattenuatorscoupledwiththeinterconnectionofthenetwork'sverticalstacks.

Thispaperpresentsasimulationbasedonafour-stacknetworkthatillustratesflowmechanismswithinthepipeworkfollowingbothappliancedischargegenerated,andsewerimposed,transients.Thissimulationidentifiestheroleoftheactiveairpressurecontroldevicesinmaintainingsystempressuresatlevelsthatdonotdepletetrapseals.

Furthersimulationexerciseswouldbenecessarytoprovideproofofconcept,anditwouldbeadvantageoustoparallelthesewithlaboratory,andpossiblysite,trialsforvalidationpurposes.Despitethiscautiontheinitialresultsarehighlyencouragingandaresufficienttoconfirmthepotentialtoprovidedefinitebenefitsintermsofenhancedsystemsecurityaswellasincreasedreliabilityandreducedinstallationandmaterialcosts.

Keywords:

Activecontrol;Trapretention;Transientpropagation

Nomenclature

C+-

characteristicequations

c

wavespeed,m/s

D

branchorstackdiameter,m

f

frictionfactor,UKdefinitionviaDarcyΔh=4fLu2/2Dg

g

accelerationduetogravity,m/s2

K

losscoefficient

L

pipelength,m

p

airpressure,N/m2

t

time,s

u

meanairvelocity,m/s

x

distance,m

γ

ratiospecificheats

Δh

headloss,m

Δp

pressuredifference,N/m2

Δt

timestep,s

Δx

internodallength,m

ρ

density,kg/m3

Suffix

A

appliancesideoftrap

B

branch

local

conditionsatnode

T

trap

atm

atmosphericpressure

F

friction

R

room

S

systemsideoftrap

w

water

ArticleOutline

Nomenclature

1.Introduction—airpressuretransientcontrolandsuppression

2.Mathematicalbasisforthesimulationoftransientpropagationinmulti-stackbuildingdrainagenetworks

3.Roleofdiversityinsystemoperation

4.Simulationoftheoperationofamulti-stacksealedbuildingdrainageandventsystem

5.Simulationsignconventions

6.Waterdischargetothenetwork

7.Surchargeatbaseofstack1

8.Sewerimposedtransients

9.Trapsealoscillationandretention

10.Conclusion—viabilityofasealedbuildingdrainageandventsystem

1.Introduction—airpressuretransientcontrolandsuppression

Airpressuretransientsgeneratedwithinbuildingdrainageandventsystemsasanaturalconsequenceofsystemoperationmayberesponsiblefortrapsealdepletionandcrosscontaminationofhabitablespace[1].Traditionalmodesoftrapsealprotection,basedontheVictorianengineer'sobsessionwithodourexclusion[2],[3]and[4],dependpredominantlyonpassivesolutionswhererelianceisplacedoncrossconnectionsandverticalstacksventedtoatmosphere[5]and[6].Thisapproach,whilebothprovenandtraditional,hasinherentweaknesses,includingtheremotenessoftheventterminations[7],leadingtodelaysinthearrivalofrelievingreflections,andthemultiplicityofopenrooflevelstackterminationsinherentwithincomplexbuildings.Thecomplexityoftheventsystemrequiredalsohassignificantcostandspaceimplications[8].

Thedevelopmentofairadmittancevalves(AAVs)overthepasttwodecadesprovidesthedesignerwithameansofalleviatingnegativetransientsgeneratedasrandomappliancedischargescontributetothetimedependentwater-flowconditionswithinthesystem.AAVsrepresentanactivecontrolsolutionastheyresponddirectlytothelocalpressureconditions,openingaspressurefallstoallowareliefairinflowandhencelimitthepressureexcursionsexperiencedbytheappliancetrapseal[9].

However,AAVsdonotaddresstheproblemsofpositiveairpressuretransientpropagationwithinbuildingdrainageandventsystemsasaresultofintermittentclosureofthefreeairpaththroughthenetworkorthearrivalofpositivetransientsgeneratedremotelywithinthesewersystem,possiblybysomesurchargeeventdownstream—includingheavyrainfallincombinedsewerapplications.

Thedevelopmentofvariablevolumecontainmentattenuators[10]thataredesignedtoabsorbairflowdrivenbypositiveairpressuretransientscompletesthenecessarydeviceprovisiontoallowactiveairpressuretransientcontrolandsuppressiontobeintroducedintothedesignofbuildingdrainageandventsystems,forboth‘standard’buildingsandthoserequiringparticularattentiontobepaidtothesecurityimplicationsofmultiplerooflevelopenstackterminations.Thepositiveairpressureattenuator(PAPA)consistsofavariablevolumebagthatexpandsundertheinfluenceofapositivetransientandthereforeallowssystemairflowstoattenuategradually,thereforereducingthelevelofpositivetransientsgenerated.

TogetherwiththeuseofAAVstheintroductionofthePAPAdeviceallowsconsiderationofafullysealedbuildingdrainageandventsystem.

Fig.1illustratesbothAAVandPAPAdevices,notethatthewaterlesssheathtrapactsasanAAVundernegativelinepressure.

(39K)

Fig. 1. Activeairpressuretransientsuppressiondevicestocontrolbothpositiveandnegativesurges.

Activeairpressuretransientsuppressionandcontrolthereforeallowsforlocalizedinterventiontoprotecttrapsealsfrombothpositiveandnegativepressureexcursions.Thishasdistinctadvantagesoverthetraditionalpassiveapproach.Thetimedelayinherentinawaitingthereturnofarelievingreflectionfromaventopentoatmosphereisremovedandtheeffectofthetransientonalltheothersystemtrapspassedduringitspropagationisavoided.

2.Mathematicalbasisforthesimulationoftransientpropagationinmulti-stackbuildingdrainagenetworks

ThepropagationofairpressuretransientswithinbuildingdrainageandventsystemsbelongstoawellunderstoodfamilyofunsteadyflowconditionsdefinedbytheStVenantequationsofcontinuityandmomentum,andsolvableviaafinitedifferenceschemeutilizingthemethodofcharacteristicstechnique.Airpressuretransientgenerationandpropagationwithinthesystemasaresultofairentrainmentbythefallingannularwaterinthesystemverticalstacksandthereflectionandtransmissionofthesetransientsatthesystemboundaries,includingopenterminations,connectionstothesewer,appliancetrapsealsandbothAAVandPAPAactivecontroldevices,maybesimulatedwithprovenaccuracy.Thesimulation[11]provideslocalairpressure,velocityandwavespeedinformationthroughoutanetworkattimeanddistanceintervalsasshortas0.001 sand300 mm.Inaddition,thesimulationreplicateslocalappliancetrapsealoscillationsandtheoperationofactivecontroldevices,therebyyieldingdataonnetworkairflowsandidentifyingsystemfailuresandconsequences.Whilethesimulationhasbeenextensivelyvalidated[10],itsusetoindependentlyconfirmthe

mechanismofSARSvirusspreadwithintheAmoyGardensoutbreakin2003hasprovidedfurtherconfidenceinitspredictions[12].

Airpressuretransientpropagationdependsupontherateofchangeofthesystemconditions.Increasingannulardownflowgeneratesanenhancedentrainedairflowandlowersthesystempressure.Retardingtheentrainedairflowgeneratespositivetransients.Externaleventsmayalsopropagatebothpositiveandnegativetransientsintothenetwork.

Theannularwaterflowinthe‘wet’stackentrainsanairflowduetotheconditionof‘noslip’establishedbetweentheannularwaterandaircoresurfacesandgeneratestheexpectedpressurevariationdownaverticalstack.Pressurefallsfromatmosphericabovethestackentryduetofrictionandtheeffectsofdrawingairthroughthewatercurtainsformedatdischargingbranchjunctions.Inthelowerwetstackthepressurerecoverstoaboveatmosphericduetothetractionforcesexertedontheairflowpriortofallingacrossthewatercurtainatthestackbase.

Theapplicationofthemethodofcharacteristicstothemodellingofunsteadyflowswasfirstrecognizedinthe1960s[13].TherelationshipsdefinedbyJack[14]allowsthesimulationtomodelthetractionforceexertedontheentrainedair.Extensiveexperimentaldataallowedthedefinitionofa‘pseudo-frictionfactor’applicableinthewetstackandoperableacrossthewaterannularflow/entrainedaircoreinterfacetoallowcombineddischargeflowsandtheireffectonairentrainmenttobemodelled.

ThepropagationofairpressuretransientsinbuildingdrainageandventsystemsisdefinedbytheStVenantequationsofcontinuityandmomentum[9],

(1)

(2)

Thesequasi-linearhyperbolicpartialdifferentialequationsareamenabletofinitedifferencesolutiononcetransformedviatheMethodofCharacteristicsintofinitedifferencerelationships,Eqs.(3)–(6),thatlinkconditionsatanodeonetimestepinthefuturetocurrentconditionsatadjacentupstreamanddownstreamnodes,Fig.2.

(18K)

Fig. 2. StVenantequationsofcontinuityandmomentumallowairflowvelocityandwavespeedtobepredictedonanx-tgridasshown.Note

.

FortheC+characteristic:

(3)

when

(4)

andtheC-characteristic:

(5)

when

(6)

wherethewavespeedcisgivenby

c=(γp/ρ)0.5.

(7)

Theseequationsinvolvetheairmeanflowvelocity,u,andthelocalwavespeed,c,duetotheinterdependenceofairpressureanddensity.Localpressureiscalculatedas

(8)

Suitableequationslinklocalpressuretoairflowortotheinterfaceoscillationoftrapseals,Tabl

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学研究 > 教学反思汇报

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1