建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx
《建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx》由会员分享,可在线阅读,更多相关《建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统.docx(42页珍藏版)》请在冰豆网上搜索。
建筑给水排水毕业设计专业外文翻译密封的建筑排水系统和通气系统
翻译
Sealedbuildingdrainageandventsystems
—anapplicationofactiveairpressuretransientcontrolandsuppression
Abstract
Theintroductionofsealedbuildingdrainageandventsystemsisconsideredaviablepropositionforcomplexbuildingsduetotheuseofactivepressuretransientcontrolandsuppressionintheformofairadmittancevalvesandpositiveairpressureattenuatorscoupledwiththeinterconnectionofthenetwork'sverticalstacks.
Thispaperpresentsasimulationbasedonafour-stacknetworkthatillustratesflowmechanismswithinthepipeworkfollowingbothappliancedischargegenerated,andsewerimposed,transients.Thissimulationidentifiestheroleoftheactiveairpressurecontroldevicesinmaintainingsystempressuresatlevelsthatdonotdepletetrapseals.
Furthersimulationexerciseswouldbenecessarytoprovideproofofconcept,anditwouldbeadvantageoustoparallelthesewithlaboratory,andpossiblysite,trialsforvalidationpurposes.Despitethiscautiontheinitialresultsarehighlyencouragingandaresufficienttoconfirmthepotentialtoprovidedefinitebenefitsintermsofenhancedsystemsecurityaswellasincreasedreliabilityandreducedinstallationandmaterialcosts.
Keywords:
Activecontrol;Trapretention;Transientpropagation
Nomenclature
C+-
characteristicequations
c
wavespeed,m/s
D
branchorstackdiameter,m
f
frictionfactor,UKdefinitionviaDarcyΔh=4fLu2/2Dg
g
accelerationduetogravity,m/s2
K
losscoefficient
L
pipelength,m
p
airpressure,N/m2
t
time,s
u
meanairvelocity,m/s
x
distance,m
γ
ratiospecificheats
Δh
headloss,m
Δp
pressuredifference,N/m2
Δt
timestep,s
Δx
internodallength,m
ρ
density,kg/m3
Suffix
A
appliancesideoftrap
B
branch
local
conditionsatnode
T
trap
atm
atmosphericpressure
F
friction
R
room
S
systemsideoftrap
w
water
ArticleOutline
Nomenclature
1.Introduction—airpressuretransientcontrolandsuppression
2.Mathematicalbasisforthesimulationoftransientpropagationinmulti-stackbuildingdrainagenetworks
3.Roleofdiversityinsystemoperation
4.Simulationoftheoperationofamulti-stacksealedbuildingdrainageandventsystem
5.Simulationsignconventions
6.Waterdischargetothenetwork
7.Surchargeatbaseofstack1
8.Sewerimposedtransients
9.Trapsealoscillationandretention
10.Conclusion—viabilityofasealedbuildingdrainageandventsystem
1.Introduction—airpressuretransientcontrolandsuppression
Airpressuretransientsgeneratedwithinbuildingdrainageandventsystemsasanaturalconsequenceofsystemoperationmayberesponsiblefortrapsealdepletionandcrosscontaminationofhabitablespace[1].Traditionalmodesoftrapsealprotection,basedontheVictorianengineer'sobsessionwithodourexclusion[2],[3]and[4],dependpredominantlyonpassivesolutionswhererelianceisplacedoncrossconnectionsandverticalstacksventedtoatmosphere[5]and[6].Thisapproach,whilebothprovenandtraditional,hasinherentweaknesses,includingtheremotenessoftheventterminations[7],leadingtodelaysinthearrivalofrelievingreflections,andthemultiplicityofopenrooflevelstackterminationsinherentwithincomplexbuildings.Thecomplexityoftheventsystemrequiredalsohassignificantcostandspaceimplications[8].
Thedevelopmentofairadmittancevalves(AAVs)overthepasttwodecadesprovidesthedesignerwithameansofalleviatingnegativetransientsgeneratedasrandomappliancedischargescontributetothetimedependentwater-flowconditionswithinthesystem.AAVsrepresentanactivecontrolsolutionastheyresponddirectlytothelocalpressureconditions,openingaspressurefallstoallowareliefairinflowandhencelimitthepressureexcursionsexperiencedbytheappliancetrapseal[9].
However,AAVsdonotaddresstheproblemsofpositiveairpressuretransientpropagationwithinbuildingdrainageandventsystemsasaresultofintermittentclosureofthefreeairpaththroughthenetworkorthearrivalofpositivetransientsgeneratedremotelywithinthesewersystem,possiblybysomesurchargeeventdownstream—includingheavyrainfallincombinedsewerapplications.
Thedevelopmentofvariablevolumecontainmentattenuators[10]thataredesignedtoabsorbairflowdrivenbypositiveairpressuretransientscompletesthenecessarydeviceprovisiontoallowactiveairpressuretransientcontrolandsuppressiontobeintroducedintothedesignofbuildingdrainageandventsystems,forboth‘standard’buildingsandthoserequiringparticularattentiontobepaidtothesecurityimplicationsofmultiplerooflevelopenstackterminations.Thepositiveairpressureattenuator(PAPA)consistsofavariablevolumebagthatexpandsundertheinfluenceofapositivetransientandthereforeallowssystemairflowstoattenuategradually,thereforereducingthelevelofpositivetransientsgenerated.
TogetherwiththeuseofAAVstheintroductionofthePAPAdeviceallowsconsiderationofafullysealedbuildingdrainageandventsystem.
Fig.1illustratesbothAAVandPAPAdevices,notethatthewaterlesssheathtrapactsasanAAVundernegativelinepressure.
(39K)
Fig. 1. Activeairpressuretransientsuppressiondevicestocontrolbothpositiveandnegativesurges.
Activeairpressuretransientsuppressionandcontrolthereforeallowsforlocalizedinterventiontoprotecttrapsealsfrombothpositiveandnegativepressureexcursions.Thishasdistinctadvantagesoverthetraditionalpassiveapproach.Thetimedelayinherentinawaitingthereturnofarelievingreflectionfromaventopentoatmosphereisremovedandtheeffectofthetransientonalltheothersystemtrapspassedduringitspropagationisavoided.
2.Mathematicalbasisforthesimulationoftransientpropagationinmulti-stackbuildingdrainagenetworks
ThepropagationofairpressuretransientswithinbuildingdrainageandventsystemsbelongstoawellunderstoodfamilyofunsteadyflowconditionsdefinedbytheStVenantequationsofcontinuityandmomentum,andsolvableviaafinitedifferenceschemeutilizingthemethodofcharacteristicstechnique.Airpressuretransientgenerationandpropagationwithinthesystemasaresultofairentrainmentbythefallingannularwaterinthesystemverticalstacksandthereflectionandtransmissionofthesetransientsatthesystemboundaries,includingopenterminations,connectionstothesewer,appliancetrapsealsandbothAAVandPAPAactivecontroldevices,maybesimulatedwithprovenaccuracy.Thesimulation[11]provideslocalairpressure,velocityandwavespeedinformationthroughoutanetworkattimeanddistanceintervalsasshortas0.001 sand300 mm.Inaddition,thesimulationreplicateslocalappliancetrapsealoscillationsandtheoperationofactivecontroldevices,therebyyieldingdataonnetworkairflowsandidentifyingsystemfailuresandconsequences.Whilethesimulationhasbeenextensivelyvalidated[10],itsusetoindependentlyconfirmthe
mechanismofSARSvirusspreadwithintheAmoyGardensoutbreakin2003hasprovidedfurtherconfidenceinitspredictions[12].
Airpressuretransientpropagationdependsupontherateofchangeofthesystemconditions.Increasingannulardownflowgeneratesanenhancedentrainedairflowandlowersthesystempressure.Retardingtheentrainedairflowgeneratespositivetransients.Externaleventsmayalsopropagatebothpositiveandnegativetransientsintothenetwork.
Theannularwaterflowinthe‘wet’stackentrainsanairflowduetotheconditionof‘noslip’establishedbetweentheannularwaterandaircoresurfacesandgeneratestheexpectedpressurevariationdownaverticalstack.Pressurefallsfromatmosphericabovethestackentryduetofrictionandtheeffectsofdrawingairthroughthewatercurtainsformedatdischargingbranchjunctions.Inthelowerwetstackthepressurerecoverstoaboveatmosphericduetothetractionforcesexertedontheairflowpriortofallingacrossthewatercurtainatthestackbase.
Theapplicationofthemethodofcharacteristicstothemodellingofunsteadyflowswasfirstrecognizedinthe1960s[13].TherelationshipsdefinedbyJack[14]allowsthesimulationtomodelthetractionforceexertedontheentrainedair.Extensiveexperimentaldataallowedthedefinitionofa‘pseudo-frictionfactor’applicableinthewetstackandoperableacrossthewaterannularflow/entrainedaircoreinterfacetoallowcombineddischargeflowsandtheireffectonairentrainmenttobemodelled.
ThepropagationofairpressuretransientsinbuildingdrainageandventsystemsisdefinedbytheStVenantequationsofcontinuityandmomentum[9],
(1)
(2)
Thesequasi-linearhyperbolicpartialdifferentialequationsareamenabletofinitedifferencesolutiononcetransformedviatheMethodofCharacteristicsintofinitedifferencerelationships,Eqs.(3)–(6),thatlinkconditionsatanodeonetimestepinthefuturetocurrentconditionsatadjacentupstreamanddownstreamnodes,Fig.2.
(18K)
Fig. 2. StVenantequationsofcontinuityandmomentumallowairflowvelocityandwavespeedtobepredictedonanx-tgridasshown.Note
.
FortheC+characteristic:
(3)
when
(4)
andtheC-characteristic:
(5)
when
(6)
wherethewavespeedcisgivenby
c=(γp/ρ)0.5.
(7)
Theseequationsinvolvetheairmeanflowvelocity,u,andthelocalwavespeed,c,duetotheinterdependenceofairpressureanddensity.Localpressureiscalculatedas
(8)
Suitableequationslinklocalpressuretoairflowortotheinterfaceoscillationoftrapseals,Tabl