外文翻译跨越式精确三角高程测量.docx

上传人:b****5 文档编号:12017285 上传时间:2023-04-16 格式:DOCX 页数:21 大小:269.81KB
下载 相关 举报
外文翻译跨越式精确三角高程测量.docx_第1页
第1页 / 共21页
外文翻译跨越式精确三角高程测量.docx_第2页
第2页 / 共21页
外文翻译跨越式精确三角高程测量.docx_第3页
第3页 / 共21页
外文翻译跨越式精确三角高程测量.docx_第4页
第4页 / 共21页
外文翻译跨越式精确三角高程测量.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

外文翻译跨越式精确三角高程测量.docx

《外文翻译跨越式精确三角高程测量.docx》由会员分享,可在线阅读,更多相关《外文翻译跨越式精确三角高程测量.docx(21页珍藏版)》请在冰豆网上搜索。

外文翻译跨越式精确三角高程测量.docx

外文翻译跨越式精确三角高程测量

附录A外文翻译

PreciseHeightDeterminationUsingLeap-Frog

TrigonometricLeveling

AyhanCeylan1andOrhanBaykal2

Abstract:

Preciselevelinghasbeenusedforthedeterminationofaccurateheightsformanyyears.Theapplicationofthistechniqueisdifficult,timeconsuming,andexpensive,especiallyinroughterrain.Thesedifficultieshaveforcedresearcherstoexaminealternativemethodsofheightdetermination.Asaresultofmodernhigh-techinstrumentdevelopments,researchhasagainbeenfocusedonprecisiontrigonometricleveling.Inthisstudy,aleap-frogtrigonometricleveling(LFTL)isappliedwithdifferentsightdistancesonasampletestnetworkattheSelcukUniversityCampusinKonya,Turkey,inordertodeterminetheoptimumsightdistances.Theresultswerecomparedwithprecisegeometriclevelingintermsofprecision,cost,andfeasibility.Leap-frogtrigonometriclevelingforthesightdistanceS=150mresultedinastandarddeviationof±1.87mm/

andwithaproductionspeedof5.6km/day.

CEDatabasesubjectheadings:

Leveling;Height;Surveys.

Introduction

Thedevelopmentoftotalstationshasledtoaninvestigationofprecisetrigonometriclevelingasanalternatetechniquetoconventionalgeometricleveling(Kratzsch1978;RuegerandBrunner1981,1982;KuntzandSchmitt1986;Hirschetal.1990;Whalen1984;Chrzanowskietal.1985;KellieandYoung1987;Youngetal.1987;Haojian1990;Aksoyetal.1993).Mostofthesepapersgivemorepracticalresults,ratherthantheoretical.

Inthisstudy,wetreatthesubjectmoretheoretically,withcurrentinstruments.Wealsodiscusstheoreticalaspectssuchaslimitsofthetechniques,errors,andaccuraciesinleap-frogtrigonometricleveling.

Slopedistancesandzenithanglesaremeasuredusingeitheraunidirectionalorareciprocalorleap-frogmethodoffieldoperationintrigonometricleveling.Bothofthetargetsinleap-frogtrigonometriclevelingcanalwaysbeplacedatthesameheightabovetheground.Thus,sightlengthsarenotlimitedbytheinclinationoftheterrain,andsystematicrefractionerrorsareexpectedtobecomerandombecausetheback-andforesightlinespassthroughthesameorsimilarlayersofair.Thenumberofsetupsperkilometercanbeminimizedbyextendingthesight

lengthstoafewhundredmeters.Thisreducestheaccumulationoferrorsduetoinstrumentsettlementthatisanothersignificantsourceofsystematicerror.

1AssistantProfessor,EngineeringandArchitectureFaculty,KonyaSelcukUniv.,42031Konya,Turkey.E-mail:

aceylan@selcuk.edu.tr

2Professor,CivilEngineeringFaculty,IstanbulTechnicalUniv.,80626Istanbul,Turkey.

Note.DiscussionopenuntilJanuary1,2007.Separatediscussionsmustbesubmittedforindividualpapers.Toextendtheclosingdatebyonemonth,awrittenrequestmustbefiledwiththeASCEManagingEditor.Themanuscriptforthispaperwassubmittedforreviewandpossible

publicationonAugust6,2003;approvedonAugust25,2005.

PrincipleofUnidirectionalTrigonometricLeveling

Trigonometriclevelingisthedeterminationofheightdifferencesbymeansofthemeasuredzenithanglesandtheslopedistance.Similartogeometricleveling,theheightdifferencebetweentwoturningpoints(benchmarks)iscomputedasthesumofseveralsingleheightdifferencesobtainedfromeachsettlement.

Themeasurementmodeloftheunidirectionaltrigonometricleveling(UDTL)isillustratedinFig.1.Thetotalstationissetupatonlyonepointandtheobservationsareperformedonlyinonedirection.

InFig.1,

=geodetic(ellipsoidal)zenithanglefrom

to

;

=observedzenithanglefrom

to

;

=modelerrorduetotherefractioneffect;Ƹij=modelerrorduetothedeviationoftheplumbline;Sij=slopedistancebetweenPiandPj;hiandhj=ellipsoidalheightsofPiandPj,respectively;Rm=meanradiusoftheearth(≈6,370km)and∆hij=heightdifferencefromPitoPj.

Theheightdifference∆hijisformulatedas

(1)

wherethefirsttermisthenominalheightdifference,thesecondtermisthesphericaleffectoftheearth,andthethirdtermisthetotaleffectduetothedeviationoftheplumblineandtheverticalrefraction(CoskunandBaykal2002).

Thecoefficientofrefraction,kij,isdefinedastheratiobetweentherefractionangledZriandhalfofthecenterangle

(RuegerandBrunner1982);i.e.

(2)

and

(3)

Thecenterangle,

canbecomputedas

(4)

If

isintroducedintoEq.(3),themodelerrorduetotherefractioneffect,dZri

isobtainedasfollows:

(5)

TheheightdifferencebetweenthestationpointsPiandPjviaunidirectionalzenithangleobservationisobtainedfromEqs.

(1)and(5)

(6)

Inpractice,theeffectofdeviationofplumblineisverysmallbecausethezenithanglesobservedalongthesightlengthsarenotlongerthan500m.Thus,thesecondterminEq.(6)canbeignored(RuegerandBrunner1982).Asaresult,theheightdifferencebetweenthestationpoints,PiandPj,iscomputedfromUDTLobservationsas

PrincipleofLeap-FrogTrigonometricLeveling

Observationofleap-frogtrigonometricleveling(LFTL)wasperformedinbackandforesightreadingatonesetupofthetotalstationbetweentwoturningpoints,thesamemethodusedingeometricleveling.ThemeasurementmodeloftheLFTLisshowninFig.2.

Fig.2.MeasurementmodelofLFTL

AccordingtoFig.2andEq.(7),theheightdifferencebetweenthestationpoints,PiandPj,isobtainedfromLFTLobservationsas

Considering

wherethefirsttermisthenominalheightdifference,thesecondtermisthesphericaleffectoftheearth,thethirdtermistheeffectduetotheverticalrefraction,andthefourthtermisthetotalinfluenceofallotherrandomerrors,namely,sinkingoftargetrods,verticalityandcalibrationofrods,anduncertaintiesinthedeviationsofplumblines.Ifweusethefollowingassumptions:

thesecondterminEq.(9)willbezero.Asaresult,theheightdifferencebetweenthestationpoints,PiandPj,iscomputedas

ItisobviousthattheheightdifferenceobtainedfromEq.(11)isaffectedbythedifferenceintheactualrefractioncoefficientsandotherrandomerrorsintheleap-frogtrigonometricleveling(LFTL).Therefractiontermrequiresfurtherinvestigation.TheuncertaintyintherefractiontermofEq.(11)canbeminimizedbymakingthelengthsoftheback-andforesightsequal.However,inequalitiesoftenexistbetweentherefractioncoefficientsofthebacksightandforesight,evenifthesedistancesareequal.Inanycase,themethodofLFTLwillmakethedifferenceinthecoefficientsofrefractiontolerablysmall.Foraspecialcase,themeancoefficientofrefractionkofalengthcanbecomputedfromreciprocalzenithangleobservations

TheaccuracyofLFTLcanbeobtainedbyapplyingthelawofvariancepropagationtoEq.(11)underthefollowingassumptions:

Afterpropagatingerrors,anexpressionforthevarianceinheightdifferencebetweenPiandPjcanbederivedas

Standarddeviationsofthedistances,thezenithangles,therefractioncoefficients,andotherrandomerrorsaredenotedby

respectively.Thevarianceofa1kmlevellineiscomputedas

Thecomputedstandarddeviationsofa1kmLFTLline,basedonstandarddeviationsof±1.0″,±2.0″,and±3.5mmforzenithanglesandslopedistances,respectively,aresummarizedinTable

1.Theuncertaintyinthecoefficientofrefractionistakenas±0.05and±0.10for(nonsimultaneous)reciprocalzenithangleobservations.Thevalueof

hasbeenarbitrarilyacceptedas±0.30mmfortotalinfluenceofallotherrandomerrors.

Table1.StandardDeviations_inmm_ofa1kmLFTLLinewithSightDistancesof100,150,200,and300mandAverageZenithAnglesof80,85,and90°

Applications

Thepreciseleveling(PL)andLFTLmeasurementswereperformedonalevelingnetworkwitheightpointsestablishedonhillyterrainattheCampusAreaofSelcukUniversityinKonya,Turkey(Fig.3).

DesignandCalibrationofSurveyingInstruments

PLmeasurementswerecarriedoutbyameasurementteamofsixpeople(oneobserver,onerecorder,tworodmen,andtwoauxiliary)usingapreciselevelinginstrument(WildN3)equipped

withaparallelglassmicrometerandapairof3minvarrods(Wild).

LFTLmeasurementswereperformedbyateamoffourpeopleusingapairoftargetrodsandatotalstation.Theaccuracyofzenithanglemeasurementwithsixseriesis±1″usingthetotalstationSokkiaSET2[telescopemagnification:

30x;minimumreading:

1″;accuracyofhorizontalandzenithanglemeasurement:

±2″;accuracyofdistancemeasurement:

±(3mm+2ppm·S)].Targetrodswereformedbytwoparts,abottomone,whichwasaninvarrodof2m,andatopone,whichwasanironbar1minlengthand2cmindiameter.Thesetwopartswereattachedtogether.Areflectorwasmountedontargetrodataheightof1.70mfromthebottominordertoimplementdistancemeasurementsandtwotargetplatesforverticalangleobservationsatlevelsof2.20and3.00m,respectively.Acircularspiritbubble(with10′precision)andatripodwereusedtoplumbthetargetrod(Fig.4).

Severaltargetplateswithdifferentpatternsofvariousdimensionswereinvestigatedfortargetingaccuracyofsightdistancesof200and300m.AredandwhitecoloredcircletargetwaspreferredforLFTL.Ithasbeenproventhattheaccuracyofsingletargetingisbetterthan30″/M(M=telescopemagnification)inaverageatmosphericconditions(Chrzanowski1989).Consequently,thetargetplateinFig.5ispreferred.

BecauseapairoftargetrodsisusedcommonlyinLFTL,theheightdifferencesbetweenthetargetplatesonbackwardandforwardrodsshouldbedeterminedwiththehighes

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1