PC机数据采集系统设计.docx

上传人:b****5 文档编号:11879440 上传时间:2023-04-08 格式:DOCX 页数:52 大小:636.96KB
下载 相关 举报
PC机数据采集系统设计.docx_第1页
第1页 / 共52页
PC机数据采集系统设计.docx_第2页
第2页 / 共52页
PC机数据采集系统设计.docx_第3页
第3页 / 共52页
PC机数据采集系统设计.docx_第4页
第4页 / 共52页
PC机数据采集系统设计.docx_第5页
第5页 / 共52页
点击查看更多>>
下载资源
资源描述

PC机数据采集系统设计.docx

《PC机数据采集系统设计.docx》由会员分享,可在线阅读,更多相关《PC机数据采集系统设计.docx(52页珍藏版)》请在冰豆网上搜索。

PC机数据采集系统设计.docx

PC机数据采集系统设计

PC机数据采集系统设计

更多论文请加QQ:

1634189238492186520

电子工程

学生李小宇指导教师罗乐

摘要:

微电子技术、传感器技术和计算机技术的飞速发展引发了仪器仪表技术的深刻变革,具有“一机多用”功能的新一代高度自动化测控仪器——PC仪器,正在迅速取代各种传统的电子测量设备。

对PC仪器的研制,不仅是本专业前沿性课题,而且具有很大的现实意义。

数据采集系统是微型计算机应用的一个重要领域。

用微机计算机控制的数据采集与处理系统可代替人力完成大量的重复性工作,处理速度快,精度高,是进行作业现场采集数据的有效手段。

本课题根据当代先进的PC仪器设计理念,设计了一个用虚拟仪器实现的数据采集系统,在选择芯片上,注重稳定性、精度、速度和价格的相互协调,从而使设计符合市场规律。

本设计包括两个部分的设计,即硬件和软件。

在进入主题之前,对涉及的基础知识作了详细的介绍。

硬件部分的工作过程如下:

首先,被检测的模拟信号送入多路模拟开关后进入采样保持器,然后被送入模数器进行模数转换,最后被传送进计算机的中央处理器。

这些数字信号通过数据总线传送。

本设计主要完成的任务是设计硬件将在现场检测的模拟信号转变成微机可以接受的数字信号,并用软件完成这一过程的虚拟仪器设计。

本论文详细介绍了各功能单元所用芯片的选择设计,在内容上,既注重基本原理的理解,又注重实际应用电路的分析,理论与实践结合性强。

关键词:

虚拟仪器、AT总线、采样保持、A/D转换。

 

Abstract:

Thetechnologicaldevelopmentofmicro-electrontube,sensorandcomputerattributestotherevolutioninthefieldofinstrument.Virtualinstrumentusedtoberareinthetestandmeasurementandindustrialautomationindustries.Today,ithasfreedmanyengineersfromthelimitationsoftraditionalinstruments.Nowmorethanever,engineersrecognizethebenefitsoftheintegratinghardwareandsoftwarecomponentswithPCstocreatecustomizedinstrumentationsolutions.Soitispracticalandoflong-rangesignificancethatwedevelopvirtualinstrumentation.

Thedatacollectingsystemisanimportantfieldinwhichthemicrocomputeruses.Datathatcomputercontrolgatherandcanreplacewithprocesssystemmanpowerfinishalargeamountofprecisionhave,carryonhomeworksceneeffectivemeanstogatherdatum.ThepaperaccordingtothecontemporaryadvancedPCdesignprinciple,designingavirtualinstrumentofrealizingdatacollectingsystem,inchoosingchip,makeapointofthestability,accuracy,speedtomoderatewithpricemutually,andmakethedesignmatchthemarketregulation.

Someworkandprogramshavebeendoneduringmydesigninthesurveyvirtualinstrument.Itismadeoftwoparts:

hardwareandsoftware.

Themainfunctionofthehardwareisasfollowing:

first,conveyanalogoussignaltoMux,andthenpushtheanalogoussignaltosampling-holdinginstrumentation;second,pushthedataintotheA/Dconverter;last,transmitthedigitalsignaltoCPU.Thesediginalsignalsareconveyedtothemicrocomputerthroughdata-bus.Mymainworkiscompletethedesignofhardware,whichcanaccuratelytransferanalogoussignaltodiginalsignalthatcanbeacceptedbymicro-computer.Andcompletethedesignofsoftwarewhichusedthevirtualinstrumentation.

Thesisthisintroduceeveryfunctionunitdesignwiththechoiceofthechipindetail,Incontent,notonlypayattentiontotheunderstandingofthebasicprinciplebutalsopayattentiontotheanalysisofthecircuitactually,Theoryandcombiningofpracticearestrong.

Keywords:

virtualinstrumentation、sampling-holdinginstrumentation、A/Dconverter

第1章绪论.……………………………………………………………………1

1.1仪器发展简史………………………………………………………1

1.2数据采集系统设计概述……………………………………………2

1.3PC机数据采集系统设计……………………………………………8

第2章总线…………………………………………………………………14

2.1总线技术……………………………………………………………14

2.2IBMPC/AT总线技术………………………………………………16

2.3端口译码……………………………………………………………20

第3章接口电路设计…………………………………………………………22

3.1数据采集………………………………………………………………22

3.2缓冲电路………………………………………………………………23

第4章核心芯片的选取………………………………………………………27

4.1模拟开关………………………………………………………………27

4.2采样保持………………………………………………………………28

4.3A/D转换器……………………………………………………………31

第5章数据采集系统电路的分析……………………………………………41

5.1数据采集系统的结构…………………………………………………41

5.2数据采集系统具体电路的分析………………………………………41

第6章Labwindows/CVI编程与实现………………………………………44

6.1虚拟仪器的背景………………………………………………………44

6.2CVI的功能及编程……………………………………………………46

第7章结论……………………………………………………………………51

致谢……………………………………………………………………………52

参考文献………………………………………………………………………53

附录……………………………………………………………………………54

1绪论

1.1仪器发展简史

近代电子技术与计算机的发展和普及应用,促使测量仪器领域发生了革命性进步,回顾仪器仪表的发展史,可知主要经历了三个阶段:

1.传统仪器

这一代仪器主要是基于电磁测量原理对模拟量进行测量,用指针来显示最终测量值,受主观因素的影响很大,响应慢、测量精度低;其后出现了数字式仪表,提高了精度,适于快速响应,但测试系统组件多,每次测量,均需重新组合所用仪器,重新调整校对。

系统精度、灵敏度受多因素影响,可靠性差、效率低下、误差较大。

2.智能仪器

智能仪器是计算机技术向测控仪器移植的产物,属于单片机开发技术。

70年代后期以来,随着微计算机技术的迅猛发展,出现了完全突破传统概念的新一代仪器仪表。

这种仪器把微处理器放入传统仪器内部,以微处理器为核心,将仪器面板上的按键、显示器以及内部的测试功能模块通过各自的接口并联于系统总线上;此外,又通过GPIB接口总线将测试部件与外部计算机或其他智能仪器相连接组成自动测试系统。

形成了具有自诊断、自修复、数字化、智能化、适应性强的仪器,表现为智能的延伸或加强,习惯上称为智能仪器。

3.PC仪器

随着个人计算机的发展,自1982年起,人们开始将具有测试功能的模块或仪器卡插在PC机系统总线插槽上,或插在计算机外部专用机箱内,通过专用仪器软件就能实现某种自动化测试操作。

只要仪器卡及配套软件功能不同,同一台PC机可构成多种“仪器”,就是通常所说的PC仪器。

PC仪器无论外形或内涵都跟传统仪器有着本质区别。

除传感器及接口电路以外,其测试、分析处理部分不再用电子电路而是由软件来实现。

仪器的面板不是实物,而是计算机屏幕上的“软面板”。

操作功能的选择,也不再是传统的开关或旋钮,而是通过专用程序,以菜单或面板画面的形式显示在CRT屏上。

测试过程中的各种操作,都是通过键盘或鼠标在屏幕上以“点菜”方式实现。

测试过程由相应的功能程序自动完成。

这种以软件构造的、用软面板显示的、“看得见、摸不着、断电即逝”、操作及测试表达效果非常规方法能及、即是PC仪器又是仪器的“仪器”又称为“虚拟仪器”。

PC仪器的出现给电子测量带来了真正革命性的冲击,在测量原理、仪器设计很多方面都产生了重大的影响,是电子测量发展的一个重要方向。

1.2数据采集系统概述

1.2.1数据采集的意义

“数据采集”就是将被测对象(外部世界、现场)的各种参量(可以是物理量,也可以是化学量、生物量等)通过各种传感元件做适当转换后,再经信号调理、采样、量化、编码、传输等步骤,最后送到控制器进行数据处理或存储记录的过程。

控制器一般均由计算机承担,所以说计算机是数据采集系统的核心,它对整个系统进行控制,并对采集的数据进行加工处理。

用于数据采集的成套设备称为数据采集系统(DataAcquisitionSystem,DAS)。

随着计算机技术的发展与普及,数字设备正越来越多地取代模拟设备,在生产过程控制和科学研究等广泛的领域中,计算机测控技术正发挥着越来越重要的作用。

然而,外部世界的大部分信息是以连续变化的物理形式出现的,例如温度、压力、位移、速度等。

要将这些进行量化编码,从而变成数字量,这个过程就是数据采集。

它是计算机信息送入计算机进行处理,就必须先将这些连续的物理量离散化,并在监测、管理和控制一个系统的过程中,取得原始数据的主要手段。

数据采集系统是计算机与外部世界联系的桥梁,是获取信息的主要途径。

数据采集技术是信息科学的重要组成部分,已广泛应用于国民经济和国防建设的各个领域,并且随着科学技术的发展,尤其是计算机技术的发展与普及,数据采集技术将有广阔的发展前景。

数据采集系统的任务,具体地说,就是采集传感器输出的模拟信号转换成计算机能识别的数字信号,然后送入计算机,跟据不同的需要由计算机进行相应的计算和处理,得出所需的数据。

与此同时,将计算得到的数据进性显示或打印,以便实现对某些物理量的监视,其中一部分数据还将被生产中的计算机控制系统用来控制某些物理量。

1.2.2数据采集系统的特点与功能

1.数据采集系统的特点

数据采集系统具有如下这些特点:

1.现代数据采集系统一般都由计算控制,使得数据采集的质量和效率等大为提高,也节省了硬件投资。

2.软件在数据采集系统中的作用越来越大,这增加了系统设计的灵活性。

3.数据采集与数据处理相互结合得日益紧密,形成数据采集与处理系统,可实现从数据采集处理到控制的全部工作。

4.数据采集过程一般都具有“实时”特性,实时的标准是能满足实际需要,对于通用数据采集系统一般希望有尽可能高的速度,以满足更多的应用环境。

5.随着微电子技术的发展,电路集成度的提高,数据采集系统的体积越来越小,可靠性越来越高,甚至出现了单片数据采集系统。

6.总线在数据采集系统中有着广泛的应用,总线技术标准对数据采集系统结构的发展起着重要作用。

2.数据采集系统的功能

数据采集系统的基本功能主要如下:

1.数据采集

计算机按照预先选定的采样周期,对输入到系统的模拟信号进行采样,有时还要对数字信号,开关信号进行采样.数字信号和开关信号不受采样周期的限制,当这些信号到来时,由相应的程序负责处理.

2.模拟信号处理

模拟信号是指随时间连续变化的信号,这些信号在规定的一段连续时间内,其幅值为连续值,即从一个量变到下一个量时中间没有间断.模拟信号有两种类型:

一种是由各种传感器获得的低电平信号;另一种是由仪器,变送器输出的电流信号.这些模拟信号经过采样和A/D(模/数)转换输入计算机后,常常要进行数据正确性判断,标度变换,线性化等处理.

模拟信号非常便于传送,但它对于干扰信号很敏感,容易使传送中的信号的幅值或相位发生畸变.因此,有时还要对模拟信号做零漂修正,数字滤波等处理.

数字信号处理数字信号是指在有限的离散瞬时上取值间断的信号.在二进制系统中,数字信号是由有限字长的数字组成,其中每位数字不是0就是1这可由脉冲的有无来体现.数字信号的特点是,它只代表某个瞬时的量值,是不连续的信号.

数字信号是由某些类型的传感器或仪器输出,它在线路上的传送形式有两种:

一种是并行方式传送;另一种是串行方式传送.数字信号对传送线路上的不完善性不敏感,这是因为只需检测脉冲的有无来获取信息,至于信号的精确性是无关紧要的.数字信号输入计算机后,常常需要进行码制转换的处理,如BCD码转换成ASCII码,以便显示数字信号。

3.开关信号处理

开关信号主要来自各种开关器件,如按钮开关,行程开关和继电器触点等.开关信号的处理主要是监测开关器件的状态变化。

4.二次数据计算

把直接由传感器采集到的数据成为一次数据,把通过对一次数据进行某种数学运算而获得的数据成为二次数据.二次数据计算主要有平均,累计,变化率,差值,最大值和最小值等。

5.屏幕显示

CRT显示装置可把各种数据以方便操作者观察的方式显示出来,屏幕上显示的内容一般称为画面.常见的画面有相关画面,趋势图,模拟图,一览表等。

6.数据存储

数据存储就是按照一定的时间间隔,定期将各种数据以表格或图形的形式打印出来。

1.2.3数据采集系统的性能指标

对数据采集系统的性能要求和具体的应用目的和应用环境有密切关系,对应不同的情况往往有不同的要求。

下面给出的是比较主要和常用的指标的含义。

1.系统分辨率:

是指数据采集系统可以分辨的输入信号最小变化量。

通常用最低有效位值占系统满度信号的百分比表示,也可以用系统可分辨的实际电压数值来表示。

有时也可以用满度信号可以分的级数来表示。

我们在衡量一个数据采集系统的分辨率高低时,通常看其位数,比如8位,12位,16位等,其位数越大,分辨率就越高。

2.系统精度:

是指当系统工作在额定的采集速率下,每个离散子样的转换精度。

模数转换器的精度是系统精度的极限值。

实际的情况是,系统的精度往往达不到模数转换器的精度,这是因为系统精度取决于系统的各个环节的精度,如前置放大器,滤波器,模拟多路开关等等,只有这些部件的精度都明显优于A/D转换器精度时,系统精度才能达到A/D的精度。

系统的精度与分辨率是两个不同的概念。

系统精度是系统的实际输出值与理论输出值之差,它是系统各种误差的总和。

通常表示为满度值的百分数。

3.采集速率:

又称为系统通过速率,吞吐率等,是指在满足系统精度指标的前提下,系统对输入模拟信号在单位时间内所完成的采集次数,或者说是系统每个通道、每秒钟可采集的子样数目。

这里所说的“采集”包括对被测物理量进行采样、量化、编码、传输、存储等的全部过程。

在时域上,与采样速率对应的指标是采样周期,它是采样速率的倒数,它表征了系统每采集一个有效数据所需要的时间。

4.动态范围:

是指某个物理量的变化范围。

信号的动态范围是指信号的最大幅值和最小幅值之比的分贝数。

数据采集系统的动态范围通常定义为所允许输入的最大幅值

与最小幅值

之比的分贝数,即

(2—1)

式中最大允许输入幅值

是指使数据采集系统的放大器发生饱和或者是使模数转换器发生溢出的最小输入幅值。

最小允许输入幅值

一般用等效噪声电平

来代替。

对于大动态范围信号的高精度采集时,还要用到“瞬时动态范围”这样一个概念。

所谓瞬时动态范围是指某一时刻系统所能采集到的信号的不同频率分量幅值之比的最大值,即幅度最大频率分量的幅值

与幅度最小频率分量的幅值

之比的分贝数。

若用I表示瞬时动态范围,则有

(2—2)

5.非线性失真:

也称为谐波失真。

当给系统输入一个频率为f的正弦波时,其输出中出现很多频率为kf(k为正整数)的新的频率分量的现象,称为非线性失真。

通常用谐波失真系数H来衡量系统产生非线性失真的程度,用下式表示

(2—3)

式中,

——基波振幅;

——第k次谐波(频率为kf)的振幅。

一般来说,一个数据采集系统性能的好坏,主要取决于它的精度和速度。

精度的提高则意味着检测灵敏度的提高和动态范围的扩大,即能容纳更多的噪声和从噪声中提取信号能力的提高。

而采集速度的加快,不禁节省了时间,而且还意味着对被测量快速变化的响应和处理能力的提高,能够实时处理。

但两者又是矛盾的,所以在实际设计数据采集系统时,要在保证精度的前提下,尽可能地提高采样速度,应满足实时采集.实时处理和实时控制对速度的要求。

1.2.4实现数据采集的方案

实现数据采集主要有两种方案,一种是采用ISA或PCI接口的A/D转换卡,另一种是采用智能传感器。

两种实现方案各有所长,智能传感器具有高精度,自适应,可靠稳定,可维护和可扩展等优点,而且传输的距离也比较远,能够实现远程的数据采集任务,但是智能传感器其使用串口接收数据,实时性比较差,相反利用A/D转换卡,就能够实现近距离的数据采集,其实时性较好。

本设计中,我就采用的是A/D转换接口实现的数据采集。

数据采集系统中采用计算机作为处理机。

众所周知,计算机内部参与运算的信号是二进制的离散数字信号,而被采集的各种物理量一般都是连续模拟信号,因次,在数据采集系统中同时存在两种不同形式的信号:

离散数字信号和连续模拟信号。

在研究开发数据采集系统时,首先遇到的问题是:

传感器所测量到的连续模拟信号怎样转换成离散的数字信号?

连续的模拟信号转换成离散的数字信号,经历了两个断续过程:

1、时间断续

对连续的模拟信号,按一定的时间间隔,抽取相应的瞬时值(也就是通常所说的离散化),这个过程称为采样。

连续的模拟信号经采样过程后转换为时间上离散的模拟信号(即幅值仍是连续的模拟信号),简称为采样信号。

2、数值断续

把采样信号以某个最小数量单位的整倍数来度量,这个过程称为量化。

采样信号经量化后变换为量化信号,再经过编码,转换为离散的数字信号(即时间和幅值是离散的信号),简称为数字信号。

对连续的模拟信号离散时,是否可以随意对模拟信号做离散化处理呢?

实践证明,在对连续的模拟信号做离散化处理时,必须遵守一个原则,而如果随意进行,将会产生如下一些问题:

(1)使采样的点增加,导致占用大量的计算机内存单元,严重时将因内存量不够而无法工作。

(2)也可能是采样太少,使采样点之间相距太远,引起原始数据值的失真,复原时不能原样复现出原来连续变化的模拟量,从而造成误差。

为了避免产生上述问题,在对模拟量信号离散化时,必须以据采样定理规定的原则进行。

1.2.5数据采集系统的构成

由于计算机以电子器件为核心,以电子器件的状态(高电平或低电平)来表示二进制数(1或0),所以计算机加工处理的是数字量。

而温度传感器测量到的是连续模拟信号,为能利用计算机技术处理来自传感器的连续模拟信号,必须首先将连续模拟信号转换成离散的数字信号。

完成这项任务的接口电路称为数据采集系统。

数据采集系统一般由以下几个部分组成:

(1)多路开关

多路开关将多路信号轮流切换到放大器的输入端,实现多参数多路信号的分时采集。

(2)放大器

放大器将待采集信号放大或衰减至采样环节的量程范围内,通常在实际系统中,放大器的增益是可调的,设计者可以根据输入信号幅值的大小选择不同的增益倍数。

(3)采样保持器

(4)采样保持器取出待测信号在某一瞬时的值,即实现信号的时间离散化,并在A/D转换过程中保持信号不变。

如果被测信号变化很缓慢,也可以不用采样保持器。

A/D转换器

A/D转换器将输入的模拟量转化为数字量输出,并完成信号幅值的量化。

随着电子技术的发展,A/D转换器的精度和速度逐渐得到提高。

以上的四个部分是组成数据采集系统的主要部分,其他相关的电路要根据实际情况选择。

数据采集系统的组成框图如图1-1所示。

后面的章节将对各部分作用及芯片选用作详细说明。

图1-1数据采集系统框图

在设计PC机数据采集系统时,因为要使用计算机,各个模块之间要进行信息的交换,数据的传送等。

无论信息传送的方式如何,都必须遵循着某种原则,这就导致了总线的诞生,下面一章将对总线技术进行详细的介绍。

1.3PC机数据采集系统设计

1.3.1设计目标

本设计主要是设计一个PC仪器数据采集系统,实现对多路输入信号的测量与控制,记录并显示测量波形。

设计数据采集PC仪器,应包括硬件与软件设计两大部分:

硬件设计主要是将传感器输出的模拟量转换为微机可接受的数字量。

并通过系统总线传递给微机。

采集卡:

其功能是将输入的多路模拟信号转换为微机可接受的数字量(模/数转换),并通过系统总线传递给微机。

总线结构使微机系统各功能部件间的相互关系成为面向总线的单一关系,只要PC插卡符合总线规范,就能扩展微机系统功能。

8路模拟信号通道都有采样/保持电路,以确保分时使用A/D转换器的各通道信号的同步采集。

PC仪器的开发属于高档微机的扩展技术,是系统级接口技术,因而它必须是一种软硬结合的技术,还应遵守微机系统设计时给出的关于系统资源标准的约定及关于系统总线标准的约定,所以问题远比芯片级接口复杂。

本设计将遵照图1-2所示流程图进行,各部分具体设计将在后续章节详细介绍。

用PC仪器组建的自动测试系统,可以去掉一些不

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1